如何基于多种族列在 Pandas 中创建新的种族标签列?
使用 Pandas 中的函数根据多个列的值创建新列
在 Pandas 中使用数据帧时,可能需要基于以下内容创建新列来自多个现有列的值。当需要将自定义函数按行应用于一组列以确定新列的值时,会出现一种常见场景。
示例场景
考虑以下具有六个与种族相关的数据框指标列:
df = pd.DataFrame({ 'ERI_Hispanic': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_AmerInd_AKNatv': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_Asian': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'ERI_Black_Afr.Amer': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_HI_PacIsl': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'ERI_White': [1, 0, 1, 1, 0, 1, 1, 1, 1, 1] })
目标是创建一个名为“race_label”的新列,该列根据以下条件:
- 如果 ERI_Hispanic 等于 1,则返回“Hispanic”。
- 如果所有非西班牙裔 ERI 列(ERI_AmerInd_AKNatv、ERI_Asian、ERI_Black_Afr.Amer、ERI_HI_PacIsl 和ERI_White) 大于1,返回“两个或更多”。
- 对于 ERI 列中的任何其他非零值,返回相应的种族标签(例如,“A/I AK Native”、“Asian”、“Black/ AA”、“Haw/Pac Isl.”或“White”)。
解决方案
解决方案涉及两个步骤:创建自定义函数来执行分类并将该函数逐行应用于数据帧。
1.定义自定义函数
def label_race(row): if row['ERI_Hispanic'] == 1: return 'Hispanic' elif row['ERI_AmerInd_AKNatv'] + row['ERI_Asian'] + row['ERI_Black_Afr.Amer'] + row['ERI_HI_PacIsl'] + row['ERI_White'] > 1: return 'Two or More' elif row['ERI_AmerInd_AKNatv'] == 1: return 'A/I AK Native' elif row['ERI_Asian'] == 1: return 'Asian' elif row['ERI_Black_Afr.Amer'] == 1: return 'Black/AA' elif row['ERI_HI_PacIsl'] == 1: return 'Haw/Pac Isl.' elif row['ERI_White'] == 1: return 'White' else: return 'Other'
此函数将数据帧的一行作为输入,并根据提供的条件返回适当的比赛标签。
2.将函数应用到数据帧
要创建新的“race_label”列,请使用 apply() 函数和 axis=1 参数将 label_race 函数应用到数据帧的每一行。
df['race_label'] = df.apply(label_race, axis=1)
带有新列的结果数据框显示如下:
ERI_Hispanic ERI_AmerInd_AKNatv ERI_Asian ERI_Black_Afr.Amer ERI_HI_PacIsl ERI_White \ 0 0 0 0 0 0 1 1 1 0 0 0 0 0 2 0 0 0 0 0 1 3 0 0 0 0 0 1 4 0 0 0 0 0 0 5 0 0 0 0 0 1 6 0 0 1 0 0 1 7 0 0 0 0 1 1 8 0 0 0 1 0 0 9 0 0 0 0 0 1 race_label 0 White 1 Hispanic 2 White 3 White 4 Other 5 White 6 Two or More 7 White 8 Haw/Pac Isl. 9 White
以上是如何基于多种族列在 Pandas 中创建新的种族标签列?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
