高基数与低基数:范围索引中哪一列应该排在第一位?
范围索引中的高基数列排序
在数据库设计中,当在多个列上创建索引时,这些列的顺序可以显着影响范围查询的性能。特别是,对于同时涉及高基数列和低基数列的查询,索引中的最佳列排序可能是违反直觉的。
场景:
考虑具有以下架构的表:
CREATE TABLE `files` ( `did` int(10) unsigned NOT NULL DEFAULT '0', `filename` varbinary(200) NOT NULL, `ext` varbinary(5) DEFAULT NULL, `fsize` double DEFAULT NULL, `filetime` datetime DEFAULT NULL, PRIMARY KEY (`did`,`filename`), KEY `fe` (`filetime`,`ext`), -- This? KEY `ef` (`ext`,`filetime`) -- or This? ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ;
该表存储文件元数据,大约有 100 万行。 filetime 列大部分具有不同的值,表示高基数,而 ext 列具有有限数量的值,表示低基数。
查询:
以下查询用于根据 ext 和 filetime 检索文件信息:
WHERE ext = '...' AND filetime BETWEEN ... AND ...
最佳索引选择:
问题是哪个索引 fe 或 ef 更适合此查询。直观上,人们可能会认为首先具有高基数列(文件时间)的索引会更有效。然而,分析表明事实恰恰相反。
解释:
使用 EXPLAIN 命令,我们可以检查不同索引选择的查询计划:
-- Force index on fe (filetime first) EXPLAIN SELECT COUNT(*), AVG(fsize) FROM files FORCE INDEX(fe) WHERE ext = 'gif' AND filetime >= '2015-01-01' AND filetime < '2015-01-01' + INTERVAL 1 MONTH; -- Force index on ef (ext first) EXPLAIN SELECT COUNT(*), AVG(fsize) FROM files FORCE INDEX(ef) WHERE ext = 'gif' AND filetime >= '2015-01-01' AND filetime < '2015-01-01' + INTERVAL 1 MONTH;
结果表明,低基数 ext 列在前的索引 ef 的性能明显优于fe.
使用优化器跟踪的进一步分析表明,使用 fe 索引,优化器估计会扫描大量行 (16684) 以过滤 ext 值。通过 ef 索引,它可以有效地使用两个索引列并仅检索相关行 (538)。
结论:
创建复合索引以支持范围时查询时,建议首先放置参与相等性测试的列(在本例中为 ext),无论其基数如何。这使得索引可以在查询执行计划中更有效地使用,从而提高性能。
以上是高基数与低基数:范围索引中哪一列应该排在第一位?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

聚集索引和非聚集索引的区别在于:1.聚集索引将数据行存储在索引结构中,适合按主键查询和范围查询。2.非聚集索引存储索引键值和数据行的指针,适用于非主键列查询。

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

MySQL 和 MariaDB 可以共存,但需要谨慎配置。关键在于为每个数据库分配不同的端口号和数据目录,并调整内存分配和缓存大小等参数。连接池、应用程序配置和版本差异也需要考虑,需要仔细测试和规划以避免陷阱。在资源有限的情况下,同时运行两个数据库可能会导致性能问题。

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

数据集成简化:AmazonRDSMySQL与Redshift的零ETL集成高效的数据集成是数据驱动型组织的核心。传统的ETL(提取、转换、加载)流程复杂且耗时,尤其是在将数据库(例如AmazonRDSMySQL)与数据仓库(例如Redshift)集成时。然而,AWS提供的零ETL集成方案彻底改变了这一现状,为从RDSMySQL到Redshift的数据迁移提供了简化、近乎实时的解决方案。本文将深入探讨RDSMySQL零ETL与Redshift集成,阐述其工作原理以及为数据工程师和开发者带来的优势。
