首页 后端开发 Python教程 为什么逐行填充 Pandas DataFrame 效率低下,什么是更好的方法?

为什么逐行填充 Pandas DataFrame 效率低下,什么是更好的方法?

Nov 30, 2024 am 10:14 AM

Why is Populating a Pandas DataFrame Row-by-Row Inefficient, and What's a Better Approach?

创建并填充一个空的 Pandas DataFrame

从概念上讲,人们可能希望首先创建一个空的 DataFrame,然后逐步用值填充它。然而,这种方法效率低下,并且容易导致性能问题。

按行增长 DataFrame 的陷阱

迭代地将行追加到空 DataFrame 的计算成本很高。由于需要动态内存分配和重新分配,它会导致二次复杂度操作。这可能会严重影响性能,尤其是在处理大型数据集时。

另一种方法:在列表中累积数据

它不是按行增长 DataFrame,而是建议将数据累积在列表中。这有几个优点:

  • 效率更高,速度更快。
  • 与 DataFrame 相比,列表的内存占用更小。
  • 数据类型会自动推断,无需手动调整。
  • 列表支持追加操作而不改变内存

从列表创建 DataFrame

一旦列表中积累了数据,就可以通过使用 pd 转换列表来轻松创建 DataFrame .DataFrame()。这可确保正确的数据类型推断并自动为 DataFrame 设置 RangeIndex。

示例

考虑问题中描述的场景。以下代码演示了如何在列表中累积数据,然后创建 DataFrame:

import pandas as pd

data = []
dates = [pd.to_datetime(f"2023-08-{day}") for day in range(10, 0, -1)]

valdict = {'A': [], 'B': [], 'C': []}  # Initialize symbol value lists

for date in dates:
    for symbol in valdict:
        if date == dates[0]:
            valdict[symbol].append(0)
        else:
            valdict[symbol].append(1 + valdict[symbol][-1])

# Create a DataFrame from the accumulated data
df = pd.DataFrame(valdict, index=dates)
登录后复制

这种方法可确保高效的数据累积和无缝的 DataFrame 创建,而无需任何性能开销或对对象列的担忧。

以上是为什么逐行填充 Pandas DataFrame 效率低下,什么是更好的方法?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1659
14
CakePHP 教程
1415
52
Laravel 教程
1310
25
PHP教程
1258
29
C# 教程
1232
24
Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

您可以在2小时内学到多少python? 您可以在2小时内学到多少python? Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:探索其主要应用程序 Python:探索其主要应用程序 Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

See all articles