如何使用 Python 中的 Scipy 将经验数据拟合到理论分布?
使用 Scipy 将经验分布拟合到理论分布
简介
您有一个整数值的大型数据集,旨在计算 p 值,即概率遇到更高的价值。为了确定这些概率,您需要寻找近似数据分布的理论分布。本文探讨了如何使用 Python 的 Scipy 包来实现此目的。
拟合分布
Scipy 的 scipy.stats 模块提供了连续和离散的广泛集合概率分布。每个分布都有自己的参数来表征其形状和行为。目标是根据拟合优度检验找到最适合您的经验数据的分布。
拟合优度检验
误差平方和 (SSE)
One方法是利用误差平方和 (SSE) 作为拟合优度度量。 SSE 计算经验概率密度函数和理论概率密度函数之间的平方差。具有最小 SSE 的分布被认为是最佳拟合。
Python 实现
以下 Python 代码演示了如何使数据符合理论分布使用 SSE:
<br>导入 pandas 作为 pd<br>导入numpy as np<br>import scipy.stats as st<br>import matplotlib.pyplot as plt<p>data = pd.read_csv('data.csv') # 替换为你的数据文件</p> <h1 id="数据直方图">数据直方图</h1> <p>plt.hist(data, bins=50)<br>plt.show()</p> <h1 id="候选分布">候选分布</h1> <p>dist_names = ['norm', 'expon', 'gamma', 'beta']</p> <h1 id="拟合每个分布并计算SSE">拟合每个分布并计算SSE</h1> <p>best_distribution = None<br>min_sse = np.inf<br>for dist in dist_names:</p> <div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">dist = getattr(st, dist) params = dist.fit(data) # Calculate SSE sse = np.mean((dist.pdf(data, *params) - np.histogram(data, bins=50, density=True)[0]) ** 2) # Update the best distribution if necessary if sse < min_sse: min_sse = sse best_distribution = dist, params
打印最佳拟合的分布参数
print(best_distribution[0].name, best_distribution[1])
此代码提供最佳拟合分布的名称及其估计参数。您可以使用这些参数来计算 p 值并评估分布的拟合优度。
以上是如何使用 Python 中的 Scipy 将经验数据拟合到理论分布?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...
