Kohya 对 FLUX LoRA (B GPU) 和 DreamBooth / Fine-Tuning (B GPU) 训练带来了巨大改进
您可以下载所有配置和完整说明
https://www.patreon.com/posts/112099700 - 微调帖子
https://www.patreon.com/posts/110879657 - LoRA 帖子
Kohya 对 FLUX LoRA 和 DreamBooth / Fine-Tuning(最低 6GB GPU)训练带来了巨大的改进。
现在低至 4GB GPU 就可以以良好的质量训练 FLUX LoRA,24GB 及以下 GPU 在进行 Full DreamBooth / Fine-Tuning 训练时获得了巨大的速度提升
您至少需要 4GB GPU 才能进行 FLUX LoRA 训练,至少需要 6GB GPU 才能进行 FLUX DreamBooth / Full Fine-Tuning 训练。真是令人兴奋。
您可以下载所有配置和完整说明> https://www.patreon.com/posts/112099700
上面的帖子还提供了适用于 Windows、RunPod 和 Massed Compute 的一键安装程序和下载程序
模型下载器脚本也已更新,在 Massed Compute 上下载 30 GB 模型总共需要 1 分钟
您可以在这里阅读最近的更新:https://github.com/kohya-ss/sd-scripts/tree/sd3?tab=readme-ov-file#recent-updates
这是 Kohya GUI 分支:https://github.com/bmaltais/kohya_ss/tree/sd3-flux.1
减少 VRAM 使用的关键是使用块交换
Kohya 实现了 OneTrainer 的逻辑,显着提高了块交换速度,现在也支持 LoRA
现在您可以在 24 GB 及以下 GPU 上使用 LoRA 进行 FP16 训练
现在您可以在 4 GB GPU 上训练 FLUX LoRA - 关键是 FP8、块交换和使用某些层训练(记住单层 LoRA 训练)
我花了 1 天多的时间来测试所有较新的配置、它们的 VRAM 需求、它们的相对步进速度并准备配置:)
以上是Kohya 对 FLUX LoRA (B GPU) 和 DreamBooth / Fine-Tuning (B GPU) 训练带来了巨大改进的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
