如何在 Python 的多处理中的多个进程之间共享大型只读数组?
多处理中的共享内存对象
在 Python 的多处理库中,您面临着同时在多个进程之间共享大型只读数组的挑战。
使用 Fork() 语义
如果您的操作系统使用写时复制 fork() 语义(例如 Unix),您的只读数据结构将所有子进程都可以访问,而无需额外的内存消耗。这是因为 fork() 创建了一种写时复制操作,因此一个进程对数据结构的更改只会写入到自己的内存空间,而其他进程则保持原始数据结构不变。
将数组打包到共享内存中
为了提高效率,请将数组转换为 NumPy 或数组结构并将其存储在共享内存中。围绕它创建一个 multiprocessing.Array 包装器并将其传递给您的函数。
可写共享对象
如果您需要可写共享对象,请使用同步或锁定机制。多处理提供两种方法:
- 简单值、数组或 ctypes 的共享内存
- 管理器代理,其中一个进程存储内存,管理器管理其他进程的访问
Manager 代理方法可以处理任意 Python 对象,但由于进程间通信涉及对象序列化和反序列化,速度较慢。
替代方法
除了多处理之外,Python 中还有各种并行处理库。如果您有多重处理可能无法充分满足的特定要求,请考虑这些选项。
以上是如何在 Python 的多处理中的多个进程之间共享大型只读数组?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
