如何有效地将缺失值的 Pandas DataFrame 转换为 NumPy 数组?
将缺失值的 Pandas 数据帧转换为 NumPy 数组
将缺失值的 Pandas 数据帧转换为 NumPy 的最有效方法数组是通过 df.to_numpy() 实现的。与 df.values 等旧方法相比,它具有多个优势,包括:
- 始终返回底层数据的视图以最大限度地减少内存消耗。
- 通过将扩展类型转换为适当的 NumPy dtypes 来处理扩展类型。
- 保留原始数据类型,除非另有指定。
示例:
<code class="python">import pandas as pd import numpy as np # Create a DataFrame with missing values df = pd.DataFrame({'A': [np.nan, np.nan, 0.1, 0.1, 0.1, 0.1], 'B': [0.2, np.nan, 0.2, 0.2, np.nan, np.nan], 'C': [np.nan, 0.5, 0.5, np.nan, 0.5, np.nan]}) # Convert to a NumPy array with missing values represented as `np.nan` array = df.to_numpy() # Result: # array([[ nan, 0.2, nan], # [ nan, nan, 0.5], # [ 0.1, 0.2, 0.5], # [ 0.1, 0.2, nan], # [ 0.1, nan, 0.5], # [ 0.1, nan, nan]])</code>
保留 Dtypes:
虽然 to_numpy 不支持直接保留 Dtypes,但您可以使用 np.rec.fromrecords 来实现此效果。
<code class="python"># Create a DataFrame with mixed data types df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7.2, 8.1, 9.3]}) # Convert to a structured array with preserved Dtypes struct_array = np.rec.fromrecords( df.reset_index(), names=list(df.columns) + ['index'] ) # Result: # rec.array([('a', 1, 4, 7.2), ('b', 2, 5, 8.1), ('c', 3, 6, 9.3)], # dtype=[('index', '<U1'), ('A', '<i8'), ('B', '<i8'), ('C', '<f8')])</code>
以上是如何有效地将缺失值的 Pandas DataFrame 转换为 NumPy 数组?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。
