如何按索引合并 Pandas 中的 DataFrame?有哪些不同类型的可用合并?
按索引合并 DataFrame:综合指南
根据索引合并两个 DataFrame 是一项常见的数据操作任务。但是,如果未正确进行合并,则可能会出现错误或意外行为。在本指南中,我们将深入研究按索引合并的各种方法,突出显示它们的关键差异和潜在陷阱。
了解合并函数
在 Python 的 Pandas 库中,有几个函数可用于合并 DataFrame:merge、join 和 concat。每个函数都有自己的默认连接类型:
- merge:内连接
- join:左连接
- concat:外连接
按索引合并
要按索引合并两个DataFrame,我们需要指定left_index和right_index参数在合并或连接函数中。这告诉 Pandas 使用 DataFrame 的行标签(索引)作为连接键。
示例:
考虑以下两个 DataFrame:
<code class="python">df1 = pd.DataFrame({'a': range(6), 'b': [5, 3, 6, 9, 2, 4]}, index=list('abcdef')) df2 = pd.DataFrame({'c': range(4), 'd': [10, 20, 30, 40]}, index=list('abhi'))</code>
内连接(默认):
要使用合并函数执行内连接:
<code class="python">pd.merge(df1, df2, left_index=True, right_index=True)</code>
输出:
a b c d a 0 5 0 10 b 1 3 1 20
左连接(默认):
要使用连接函数执行左连接:
<code class="python">df1.join(df2)</code>
输出:
a b c d a 0 5 0.0 10.0 b 1 3 1.0 20.0 c 2 6 NaN NaN d 3 9 NaN NaN e 4 2 NaN NaN f 5 4 NaN NaN
外部联接:
要使用 concat 函数执行外部联接:
<code class="python">pd.concat([df1, df2], axis=1)</code>
输出:
a b c d a 0.0 5.0 0.0 10.0 b 1.0 3.0 1.0 20.0 c 2.0 6.0 NaN NaN d 3.0 9.0 NaN NaN e 4.0 2.0 NaN NaN f 5.0 4.0 NaN NaN h NaN NaN 2.0 30.0 i NaN NaN 3.0 40.0
重要说明:
- 当连接列的大小与整个 DataFrame 相比较小时,按索引合并非常高效。
- 按索引进行外连接的计算成本可能很高。
- 在执行任何合并之前将索引转移到列通常被认为是良好的做法。
以上是如何按索引合并 Pandas 中的 DataFrame?有哪些不同类型的可用合并?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。
