如何在Python中有效地解析固定宽度的文件行?
快速解析固定宽度文件行
解析固定宽度文件(每列在一行中占据特定数量的字符)可能是一项需要效率的任务。以下是关于如何有效实现这一目标的讨论:
问题
考虑一个固定宽度的文件,其中前 20 个字符代表一列,后面的 21-30 代表第二列,依此类推在。给定一行 100 个字符,我们如何有效地将其解析为各自的列?
解决方案
1.结构模块:
利用 Python 标准库的 struct 模块由于其 C 实现而提供了简单性和速度。下面的代码演示了其用法:
<code class="python">import struct fieldwidths = (2, -10, 24) fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's') for fw in fieldwidths) # Convert Unicode input to bytes and decode result. unpack = struct.Struct(fmtstring).unpack_from # Alias. parse = lambda line: tuple(s.decode() for s in unpack(line.encode())) # Parse a sample line. line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n' fields = parse(line) print('fields:', fields)</code>
输出:
fmtstring: '2s 10x 24s', record size: 36 chars fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
2.优化的字符串切片:
虽然字符串切片很常用,但对于大行来说它可能会变得很麻烦。这是一种优化方法:
<code class="python">from itertools import zip_longest from itertools import accumulate def make_parser(fieldwidths): # Calculate slice boundaries. cuts = tuple(cut for cut in accumulate(abs(fw) for fw in fieldwidths)) # Create field slice tuples. flds = tuple(zip_longest(cuts, (0,)+cuts))[:-1] # Ignore final value. # Construct the parsing function. parse = lambda line: tuple(line[i:j] for i, j in flds) parse.size = sum(abs(fw) for fw in fieldwidths) parse.fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's') for fw in fieldwidths) return parse # Parse a sample line. line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n' fieldwidths = (2, -10, 24) # Negative values indicate ignored padding fields. parse = make_parser(fieldwidths) fields = parse(line) print('fmtstring:', parse.fmtstring, ', record size:', parse.size, 'chars') print('fields:', fields)</code>
输出:
fmtstring: '2s 10x 24s', record size: 36 chars fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
以上是如何在Python中有效地解析固定宽度的文件行?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。
