如何使用 BeautifulSoup 从纽约网站提取停车票数据?
使用 Python 的 BeautifulSoup 解析 HTML 表格
在处理网页抓取项目时,了解如何有效地解析 HTML 表格至关重要。 BeautifulSoup 是一个流行的 Python 库,它提供了一种从 HTML 文档中提取数据的强大方法。在本文中,我们将探讨一个特定场景:使用 BeautifulSoup 解析 NYC 停车罚单表。
问题:
要学习 Python 的请求和 BeautifulSoup 库,您需要我们的任务是编写一个简单的纽约停车罚单解析器。导航到指定 URL 并获得 HTML 响应后,您需要帮助提取“lineItemsTable”HTML 表格中列出的所有停车票。
如何解析表格:
解析表的关键在于利用BeautifulSoup的表解析功能。以下是完成此操作的修订版 Python 代码片段:
<code class="python">import requests from bs4 import BeautifulSoup plate = "T630134C" plateRequest = requests.get(f"https://paydirect.link2gov.com/NYCParking-Plate/ItemSearch?PlateNumber={plate}") soup = BeautifulSoup(plateRequest.text, "html.parser") table = soup.find("table", {"class": "lineItemsTable"}) table_body = table.find("tbody") rows = table_body.find_all("tr") data = [] for row in rows: cols = row.find_all("td") cols = [col.text.strip() for col in cols] data.append([col for col in cols if col])</code>
附加说明:
- 提取的数据中的最后一行包括“付款金额”标签,它不是表格的一部分。您可以通过检查行长度是否小于 7 来过滤掉此内容。
- 每行的最后一列是需要特殊处理的输入文本框。
通过以下操作步骤,您可以使用 BeautifulSoup 有效解析 NYC 停车罚单表,并提取项目所需的所有信息。
以上是如何使用 BeautifulSoup 从纽约网站提取停车票数据?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
