首页 后端开发 Python教程 如何使用 NumPy 的 `np.where` 函数根据多个条件选择元素?

如何使用 NumPy 的 `np.where` 函数根据多个条件选择元素?

Oct 26, 2024 am 08:50 AM

How can I use NumPy's `np.where` function to select elements based on multiple conditions?

具有多个条件的 Numpy where 函数

处理数组时,NumPy 中的 np.where 函数可以是一个有用的工具,用于选择特定的基于一定条件的元素。但是,当尝试同时应用多个条件时,可能会出现混乱。

考虑问题中呈现的场景:目标是从名为 dists 的数组中选择指定范围内的距离。尝试了以下代码:

dists[(np.where(dists >= r)) and (np.where(dists <= r + dr))]
登录后复制

但是,此代码仅选择小于或等于 r dr 的距离,而不是同时选择这两个条件。要理解为什么会发生这种情况,必须注意 np.where 返回索引列表,而不是布尔数组。

更正代码

正确的方法使用 np.where 应用多个条件是使用逐元素运算符(& 表示 AND,| 表示 OR)创建组合布尔数组,如下所示:

dists[(dists >= r) &amp; (dists <= r + dr)]
登录后复制

或者,如果特别需要结果以索引的形式,使用以下语法:

np.where((dists >= r) &amp; (dists <= r + dr))
登录后复制

为什么原始代码不起作用

原始问题中涉及的代码序列评估了两个独立地分离条件:首先,距离大于或等于r,然后距离小于或等于r dr。但是,因为 np.where 返回索引,所以使用 and 连接这两个条件的结果导致仅选择第二个条件中的索引。

创建一个按元素组合条件的布尔数组使用运算符。这可确保数组中的每个元素同时基于两个条件为 True 或 False。

替代方法

选择范围内距离的替代方法是使用条件索引,如下所示:

dists[abs(dists - (r + dr / 2.)) <= dr / 2.]
登录后复制

此选项通过创建一个布尔数组来检查每个距离是否在以 r 为中心的范围内,从而提供更简洁和可读的解决方案。

以上是如何使用 NumPy 的 `np.where` 函数根据多个条件选择元素?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1666
14
CakePHP 教程
1426
52
Laravel 教程
1328
25
PHP教程
1273
29
C# 教程
1253
24
Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

See all articles