如何确定 Numpy 数组是否包含特定行?
查找 Numpy 数组是否包含特定行
使用 Numpy 数组时,有时需要验证特定行是否存在数组内。与标准 Python 列表不同,Numpy 数组提供了独特的细微差别,在执行此类检查时需要专门的方法。
Numpy 数组差异
与 Python 数组不同,Numpy 数组在以下情况下表现出不同的行为:使用 in 运算符测试行是否存在:
<code class="python"># Python Array a = [[1, 2], [10, 20], [100, 200]] [1, 2] in a # True [1, 20] in a # False # Numpy Array a = np.array([[1, 2], [10, 20], [100, 200]]) np.array([1, 2]) in a # True np.array([1, 20]) in a # True (Unexpected)</code>
高效方法
要有效检查 Numpy 数组中的行是否存在,请考虑以下方法:
- .tolist() 转换: 将 Numpy 数组转换为列表,然后在列表上使用 in 运算符:
<code class="python">[1, 2] in a.tolist() # True [1, 20] in a.tolist() # False</code>
- Numpy 视图: 使用数组的视图快速检查行是否存在:
<code class="python">any((a[:]==[1,2]).all(1)) # True any((a[:]==[1,20]).all(1)) # False</code>
- Numpy 上的生成器: 在每行上生成数组并与目标行进行比较:
<code class="python">any(([1, 2] == x).all() for x in a) # Stops on first occurrence</code>
- Numpy 逻辑函数: 利用 Numpy 逻辑函数来执行比较:
<code class="python">any(np.equal(a, [1, 2]).all(1)) # True</code>
性能注意事项
这些方法的性能因数组的大小和结构而异。以下是 300,000 x 3 数组的一些计时:
early hit: [9000, 9001, 9002] in 300,000 elements: view: 0.01002 seconds python list: 0.00305 seconds gen over numpy: 0.06470 seconds logic equal: 0.00909 seconds late hit: [899970, 899971, 899972] in 300,000 elements: view: 0.00936 seconds python list: 0.30604 seconds gen over numpy: 6.47660 seconds logic equal: 0.00965 seconds
结论
为了在 Numpy 数组中进行有效的行存在检查,建议使用 . tolist()、Numpy 视图或 Numpy 逻辑函数方法。应避免使用生成器方法,因为它的性能开销很大。
以上是如何确定 Numpy 数组是否包含特定行?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
