在 Python 中处理离群值 - IQR 方法
介绍
在从现实世界的数据中发现任何见解之前,检查您的数据以确保数据一致且没有错误非常重要。但是,数据可能包含错误,并且某些值可能看起来与其他值不同,这些值称为异常值。异常值会对数据分析产生负面影响,导致错误的见解,从而导致利益相关者做出错误的决策。因此,处理异常值是数据科学中数据预处理阶段的关键步骤。在本文中,我们将评估处理异常值的不同方法。
异常值
异常值是与数据集中的大多数数据点显着不同的数据点。它们是超出特定变量的预期或通常值范围的值。异常值的出现有多种原因,例如数据输入过程中的错误、采样错误。在机器学习中,异常值可能会导致您的模型做出错误的预测,从而导致预测不准确。
使用 Jupyter Notebook 检测数据集中的异常值
- 导入Python库
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') plt.style.use('ggplot')
- 使用 pandas 加载 csv 文件
df_house_price = pd.read_csv(r'C:\Users\Admin\Desktop\csv files\housePrice.csv')
- 检查前五行房价数据集,以了解您的数据框架
df_house_price.head()
- 使用箱线图检查价格列中的异常值
sns.boxplot(df_house_price['Price']) plt.title('Box plot showing outliers in prices') plt.show()
- 从箱线图可视化中,价格列具有异常值
- 现在我们必须想出方法来处理这些异常值,以确保更好的决策并确保机器学习模型做出正确的预测
IQR 处理异常值的方法
- IQR 方法意味着四分位数间距衡量数据中间一半的分布。这是样本中间 50% 的范围。
使用四分位距删除异常值的步骤
- 计算第一个四分位数 (Q1),即数据的 25% 和第三四分位数 (Q3),即数据的 75%。
Q1 = df_house_price['Price'].quantile(0.25) Q3 = df_house_price['Price'].quantile(0.75)
- 计算四分位数范围
IQR = Q3 - Q1
- 确定异常值边界。
lower_bound = Q1 - 1.5 * IQR
- 下限意味着任何低于 -5454375000.0 的值都是异常值
upper_bound = Q3 + 1.5 * IQR
上限意味着任何高于 12872625000.0 的值都是异常值
删除价格列中的异常值
filt = (df_house_price['Price'] >= lower_bound) & (df_house_price['Price'] <= upper_bound) df = df_house_price[filt] df.head()
- 去除异常值后的箱线图
sns.boxplot(df['Price']) plt.title('Box plot after removing outliers') plt.show()
处理异常值的不同方法
- Z 分数法
- 百分位数上限(缩尾)
- 修剪(截断)
- 插补
- 基于聚类的方法,例如 DBSCAN
结论
IQR 方法简单且对异常值具有鲁棒性,并且不依赖于正态性假设。缺点是它只能处理单变量数据,如果数据倾斜或有重尾,它会删除有效的数据点。
谢谢
在链接和 github 上关注我以了解更多信息。
以上是在 Python 中处理离群值 - IQR 方法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
