首页 后端开发 Python教程 PythonGIL 中的自由线程模式已禁用)

PythonGIL 中的自由线程模式已禁用)

Oct 11, 2024 am 10:17 AM

Python 3.13 最近刚刚发布,具有一个令人惊叹的新功能,称为“自由线程模式”。当您使用线程时,这对于代码的性能来说是一个很大的改进。本文展示了如何启用此功能(默认情况下不启用)并展示“自由线程模式”对代码性能的影响。

安装免费线程Python

Windows 和 MacOS 用户

对于 Windows 和 MacOS 用户,只需从 Python 网站下载最新的安装程序即可。当您安装Python时,当您选择“自定义安装”选项时,会有一个启用“自由线程模式”的复选框。

Free Threaded Mode in PythonGIL disabled)

Ubuntu 用户

对于 Ubuntu 用户,您可以通过在终端中运行以下命令来启用此功能:

sudo add-apt-repository ppa:deadsnakes
sudo apt-get update
sudo apt-get install python3.13-nogil
登录后复制

验证自由线程模式已启用

安装包后,您可以使用 python3.13(原始)和 python3.13-nogil 或 python3.13t(免费线程 Python)运行代码。

查看这篇文章,了解有关如何在 Linux 发行版上安装 Python 3.13 实验版的更多详细信息。

要验证您的 Python 是否启用了“自由线程模式”,您可以使用以下命令:

python3.13t -VV
Python 3.13.0 experimental free-threading build (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
登录后复制

自由线程模式性能

实验设置

让我们看看自由线程模式对下面简单代码的影响:

  • 我有一个函数工作者,它执行一些计算并返回 0 到 1000 万之间的数字总和。
  • 我有“测试 1”来按顺序运行工作函数 5 次。
  • 我有“测试 2”来使用多个线程并行运行工作函数,线程数为 5。
  • 我确实测量了这两个测试的执行时间。
import sys
import threading
import time

print("Python version : ", sys.version)

def worker():
    sum = 0
    for i in range(10000000):
        sum += i


n_worker = 5
# Single thread

start = time.perf_counter()
for i in range(n_worker):
    worker()
print("Single Thread: ", time.perf_counter() - start, "seconds")


# Multi thread
start = time.perf_counter()
threads = []
for i in range(n_worker):
    t = threading.Thread(target=worker)

    threads.append(t)
    t.start()

for t in threads:
    t.join()
print("Multi Thread: ", time.perf_counter() - start, "seconds")

登录后复制

稍后,我将使用普通 Python(python3.13 二进制文件)和免费线程 Python(pypy3.13t 二进制文件)运行此代码。

结果

首先,使用python3.13运行测试:

python3.13 gil_test.py 
Python version :  3.13.0 (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
Single Thread:  1.4370562601834536 seconds
Multi Thread:  1.3681392602156848 seconds
登录后复制

然后,使用 pypy3.13t 运行测试:

python3.13t gil_test.py 
Python version :  3.13.0 experimental free-threading build (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
Single Thread:  1.862126287072897 seconds
Multi Thread:  0.3931183419190347 seconds
登录后复制

我也尝试使用 python3.11:

python3.11 gil_test.py 
Python version :  3.11.3 (main, Apr 25 2023, 16:40:23) [GCC 11.3.0]
Single Thread:  1.753435204969719 seconds
Multi Thread:  1.457715731114149 seconds
登录后复制

结果分析

Python默认有GIL(Global Interpreter Lock)锁定机制,使得多线程实际上并不是并行的。可以看到单线程的时间处理和多线程类似。

使用python3.11t(自由线程模式),多线程性能比单线程快很多。所以,多线程现在实际上是并行的。

但是,你有没有发现 python3.13t 中的单线程测试比 pypy3.13 慢一点?

我不太明白为什么,所以如果你有任何解释请告诉我。

结论

我认为在python中使用多线程进行并行处理是很好的。但是,如果没有GIL锁定机制,则需要开发人员注意“线程安全”,即。在线程之间共享数据。

此外,我们需要等待库和包更新才能完全支持自由线程模式。这就是为什么现在默认情况下不启用“自由线程模式”的原因之一。但是,我认为这将是未来的一个很好的功能。

以上是PythonGIL 中的自由线程模式已禁用)的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1671
14
CakePHP 教程
1428
52
Laravel 教程
1331
25
PHP教程
1276
29
C# 教程
1256
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

科学计算的Python:详细的外观 科学计算的Python:详细的外观 Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

See all articles