首页 后端开发 Python教程 重构 ReadmeGenie

重构 ReadmeGenie

Oct 09, 2024 am 10:14 AM

Refactoring ReadmeGenie

Introduction

This week I was tasked to refactor the ReadmeGenie. If you just arrived here, ReadmeGenie is my open-source project that uses AI to generate readmes based on the files that the user inputs.

Initially, my thoughts were, "The program is working fine. I’ve been developing it in an organized way since day one... so why change it?"

Well, after taking a week-long break from the project, I opened it up again and immediately thought, "What is this?"

Why refactor?

To give you some context, here’s an example: One of my core functions, which I once thought was perfect, turned out to be much more complex than necessary. During the refactoring process, I broke it down into five separate functions—and guess what? The code is much cleaner and easier to manage now.

Take a look at the original version of this function:

def generate_readme(file_paths, api_key, base_url, output_filename, token_usage):
    try:
        load_dotenv()

        # Check if the api_key was provided either as an environment variable or as an argument
        if not api_key and not get_env():
            logger.error(f"{Fore.RED}API key is required but not provided. Exiting.{Style.RESET_ALL}")
            sys.exit(1)

        # Concatenate content from multiple files
        file_content = ""
        try:
            for file_path in file_paths:
                with open(file_path, 'r') as file:
                    file_content += file.read() + "\\n\\n"
        except FileNotFoundError as fnf_error:
            logger.error(f"{Fore.RED}File not found: {file_path}{Style.RESET_ALL}")
            sys.exit(1)

        # Get the base_url from arguments, environment, or use the default
        chosenModel = selectModel(base_url)
        try:
            if chosenModel == 'cohere':
                base_url = os.getenv("COHERE_BASE_URL", "https://api.cohere.ai/v1")
                response = cohereAPI(api_key, file_content)
                readme_content = response.generations[0].text.strip() + FOOTER_STRING
            else:
                base_url = os.getenv("GROQ_BASE_URL", "https://api.groq.com")
                response = groqAPI(api_key, base_url, file_content)
                readme_content = response.choices[0].message.content.strip() + FOOTER_STRING
        except AuthenticationError as auth_error:
            logger.error(f"{Fore.RED}Authentication failed: Invalid API key. Please check your API key and try again.{Style.RESET_ALL}")
            sys.exit(1)
        except Exception as api_error:
            logger.error(f"{Fore.RED}API request failed: {api_error}{Style.RESET_ALL}")
            sys.exit(1)

        # Process and save the generated README content
        if readme_content[0] != '*':
            readme_content = "\n".join(readme_content.split('\n')[1:])

        try:
            with open(output_filename, 'w') as output_file:
                output_file.write(readme_content)
            logger.info(f"README.md file generated and saved as {output_filename}")
            logger.warning(f"This is your file's content:\n{readme_content}")
        except IOError as io_error:
            logger.error(f"{Fore.RED}Failed to write to output file: {output_filename}. Error: {io_error}{Style.RESET_ALL}")
            sys.exit(1)

        # Save API key if needed
        if not get_env() and api_key is not None:
            logger.warning("Would you like to save your API key and base URL in a .env file for future use? [y/n]")
            answer = input()
            if answer.lower() == 'y':
                create_env(api_key, base_url, chosenModel)
        elif get_env():
            if chosenModel == 'cohere' and api_key != os.getenv("COHERE_API_KEY"):
                if api_key is not None:
                    logger.warning("Would you like to save this API Key? [y/n]")
                    answer = input()
                    if answer.lower() == 'y':
                        create_env(api_key, base_url, chosenModel)
            elif chosenModel == 'groq' and api_key != os.getenv("GROQ_API_KEY"):
                if api_key is not None:
                    logger.warning("Would you like to save this API Key? [y/n]")
                    answer = input()
                    if answer.lower() == 'y':
                        create_env(api_key, base_url, chosenModel)

        # Report token usage if the flag is set
        if token_usage:
            try:
                usage = response.usage
                logger.info(f"Token Usage Information: Prompt tokens: {usage.prompt_tokens}, Completion tokens: {usage.completion_tokens}, Total tokens: {usage.total_tokens}")
            except AttributeError:
                logger.warning(f"{Fore.YELLOW}Token usage information is not available for this response.{Style.RESET_ALL}")
        logger.info(f"{Fore.GREEN}File created successfully")
        sys.exit(0)
登录后复制

1. Eliminate Global Variables
Global variables can lead to unexpected side effects. Keep the state within the scope it belongs to, and pass values explicitly when necessary.

2. Use Functions for Calculations
Avoid storing intermediate values in variables where possible. Instead, use functions to perform calculations when needed—this keeps your code flexible and easier to debug.

3. Separate Responsibilities
A single function should do one thing, and do it well. Split tasks like command-line argument parsing, file reading, AI model management, and output generation into separate functions or classes. This separation allows for easier testing and modification in the future.

4. Improve Naming
Meaningful variable and function names are crucial. When revisiting your code after some time, clear names help you understand the flow without needing to re-learn everything.

5. Reduce Duplication
If you find yourself copying and pasting code, it’s a sign that you could benefit from shared functions or classes. Duplication makes maintenance harder, and small changes can easily result in bugs.

Commiting and pushing to GitHub

1. Create a branch
I started by creating a branch using:

git checkout -b <branch-name>
登录后复制

This command creates a new branch and switches to it.

2. Making a Series of Commits
Once on the new branch, I made incremental commits. Each commit represents a logical chunk of work, whether it was refactoring a function, fixing a bug, or adding a new feature. Making frequent, small commits helps track changes more effectively and makes it easier to review the history of the project.

git status
git add <file_name>
git commit -m "Refactored function"
登录后复制

3. Rebasing to Keep a Clean History
After making several commits, I rebased my branch to keep the history clean and linear. Rebasing allows me to reorder, combine, or modify commits before they are pushed to GitHub. This is especially useful if some of the commits are very small or if I want to avoid cluttering the commit history with too many incremental changes.

git rebase -i main
登录后复制

In this step, I initiated an interactive rebase on top of the main branch. The -i flag allows me to modify the commit history interactively. I could squash some of my smaller commits into one larger, cohesive commit. For instance, if I had a series of commits like:

Refactor part 1
Refactor part 2
Fix bug in refactor

I could squash them into a single commit with a clearer message

4. Pushing Changes to GitHub
Once I was satisfied with the commit history after the rebase, I pushed the changes to GitHub. If you’ve just created a new branch, you’ll need to push it to the remote repository with the -u flag, which sets the upstream branch for future pushes.

git push -u origin <branch-name>
登录后复制

5. Merging
In the last step I did a fast-forward merge to the main branch and pushed again

git checkout main # change to the main branch
git merge --ff-only <branch-name> # make a fast-forward merge
git push origin main # push to the main
登录后复制

Takeaways

Everything has room to improve. Refactoring may seem like a hassle, but it often results in cleaner, more maintainable, and more efficient code. So, the next time you feel hesitant about refactoring, remember: there’s always a better way to do things.
Even though I think it's perfect now, I will definitely have something to improve on my next commit.

以上是重构 ReadmeGenie的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1676
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

科学计算的Python:详细的外观 科学计算的Python:详细的外观 Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Web开发的Python:关键应用程序 Web开发的Python:关键应用程序 Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

See all articles