创建 LLM 以在 Python 中使用张量流进行测试
嗨,
我想测试一个小型 LLM 程序,我决定使用 TensorFlow 来实现。
我的源代码可以在 https://github.com/victordalet/first_llm
一、要求
您需要安装tensorflow和numpy
pip install 'numpy<2' pip install tensorflow
II - 创建数据集
您需要创建一个数据字符串数组来计算一个小数据集,例如我创建:
data = [ "Salut comment ca va", "Je suis en train de coder", "Le machine learning est une branche de l'intelligence artificielle", "Le deep learning est une branche du machine learning", ]
如果你没有灵感,可以在kaggle上找到一个数据集。
III - 构建模型并训练它
为此,我使用各种方法创建了一个小型 LLM 类。
class LLM: def __init__(self): self.model = None self.max_sequence_length = None self.input_sequences = None self.total_words = None self.tokenizer = None self.tokenize() self.create_input_sequences() self.create_model() self.train() test_sentence = "Pour moi le machine learning est" print(self.test(test_sentence, 10)) def tokenize(self): self.tokenizer = Tokenizer() self.tokenizer.fit_on_texts(data) self.total_words = len(self.tokenizer.word_index) + 1 def create_input_sequences(self): self.input_sequences = [] for line in data: token_list = self.tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] self.input_sequences.append(n_gram_sequence) self.max_sequence_length = max([len(x) for x in self.input_sequences]) self.input_sequences = pad_sequences(self.input_sequences, maxlen=self.max_sequence_length, padding='pre') def create_model(self): self.model = Sequential() self.model.add(Embedding(self.total_words, 100, input_length=self.max_sequence_length - 1)) self.model.add(LSTM(150, return_sequences=True)) self.model.add(Dropout(0.2)) self.model.add(LSTM(100)) self.model.add(Dense(self.total_words, activation='softmax')) def train(self): self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) X, y = self.input_sequences[:, :-1], self.input_sequences[:, -1] y = tf.keras.utils.to_categorical(y, num_classes=self.total_words) self.model.fit(X, y, epochs=200, verbose=1)
IV - 测试
最后,我使用类的构造函数中调用的测试方法来测试模型。
警告:如果生成的单词与前一个单词相同,我会在此测试函数中阻止生成。
def test(self, sentence: str, nb_word_to_generate: int): last_word = "" for _ in range(nb_word_to_generate): token_list = self.tokenizer.texts_to_sequences([sentence])[0] token_list = pad_sequences([token_list], maxlen=self.max_sequence_length - 1, padding='pre') predicted = np.argmax(self.model.predict(token_list), axis=-1) output_word = "" for word, index in self.tokenizer.word_index.items(): if index == predicted: output_word = word break if last_word == output_word: return sentence sentence += " " + output_word last_word = output_word return sentence
以上是创建 LLM 以在 Python 中使用张量流进行测试的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。
