首页 后端开发 Python教程 Streamlit:ML 应用程序创建的魔杖

Streamlit:ML 应用程序创建的魔杖

Oct 07, 2024 pm 08:10 PM

Streamlit 是一个功能强大的开源框架,允许您为数据科学机器学习创建网络应用程序,只需几行Python代码。

它简单、直观,并且不需要前端经验,这使其成为初学者和想要快速部署机器学习模型的经验丰富的开发人员的绝佳工具。

在本博客中,我将指导您逐步使用 Iris 数据集 和 RandomForestClassifier 构建基本的 Streamlit 应用程序和 机器学习项目 .

Streamlit 入门

在进入该项目之前,让我们先了解一些基本的 Streamlit 功能,以熟悉该框架。您可以使用以下命令安装 Streamlit:


pip install streamlit


登录后复制

安装后,您可以通过创建一个 Python 文件(例如 app.py)来启动您的第一个 Streamlit 应用程序,并使用以下命令运行它:


streamlit run app.py


登录后复制

现在,让我们来探讨一下 Streamlit 的核心功能:

1。编写标题并显示文本


import streamlit as st

# Writing a title
st.title("Hello World")

# Display simple text
st.write("Displaying a simple text")


登录后复制

Streamlit: The Magic Wand for ML App Creation

2。显示数据框


import pandas as pd

# Creating a DataFrame
df = pd.DataFrame({
    "first column": [1, 2, 3, 4],
    "second column": [5, 6, 7, 8]
})

# Display the DataFrame
st.write("Displaying a DataFrame")
st.write(df)


登录后复制

Streamlit: The Magic Wand for ML App Creation

3。用图表可视化数据


import numpy as np

# Generating random data
chart_data = pd.DataFrame(
    np.random.randn(20, 4), columns=['a', 'b', 'c', 'd']
)

# Display the line chart
st.line_chart(chart_data)


登录后复制

Streamlit: The Magic Wand for ML App Creation

4。用户交互:文本输入、滑块和选择框
Streamlit 支持交互式小部件,例如文本输入、滑块和根据用户输入动态更新的选择框。


# Text input
name = st.text_input("Your Name Is:")
if name:
    st.write(f'Hello, {name}')

# Slider
age = st.slider("Select Your Age:", 0, 100, 25)
if age:
    st.write(f'Your Age Is: {age}')

# Select Box
choices = ["Python", "Java", "Javascript"]
lang = st.selectbox('Favorite Programming Language', choices)
if lang:
    st.write(f'Favorite Programming Language is {lang}')


登录后复制

Streamlit: The Magic Wand for ML App Creation

5。文件上传
您可以允许用户上传文件并在您的 Streamlit 应用程序中动态显示其内容:


# File uploader for CSV files
file = st.file_uploader('Choose a CSV file', 'csv')

if file:
    data = pd.read_csv(file)
    st.write(data)


登录后复制

Streamlit: The Magic Wand for ML App Creation

使用 Streamlit 构建机器学习项目

现在您已经熟悉了基础知识,让我们深入创建一个机器学习项目。我们将使用著名的 Iris 数据集,并使用 scikit-learn 中的 RandomForestClassifier 构建一个简单的分类 模型

项目结构:

  • 加载数据集。
  • 训练随机森林分类器。
  • 允许用户使用滑块输入功能。
  • 根据输入特征预测物种。

1。安装必要的依赖项
首先,让我们安装必要的库:


pip install streamlit scikit-learn numpy pandas


登录后复制

2。导入库并加载数据
让我们导入必要的库并加载 Iris 数据集:


import streamlit as st
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

# Cache data for efficient loading
@st.cache_data
def load_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df["species"] = iris.target
    return df, iris.target_names

df, target_name = load_data()


登录后复制

3。训练机器学习模型
获得数据后,我们将训练随机森林分类器以根据花的特征来预测花的种类:


# Train RandomForestClassifier
model = RandomForestClassifier()
model.fit(df.iloc[:, :-1], df["species"])


登录后复制

4。创建输入界面
现在,我们将在侧边栏中创建滑块,以允许用户输入用于进行预测的特征:


# Sidebar for user input
st.sidebar.title("Input Features")
sepal_length = st.sidebar.slider("Sepal length", float(df['sepal length (cm)'].min()), float(df['sepal length (cm)'].max()))
sepal_width = st.sidebar.slider("Sepal width", float(df['sepal width (cm)'].min()), float(df['sepal width (cm)'].max()))
petal_length = st.sidebar.slider("Petal length", float(df['petal length (cm)'].min()), float(df['petal length (cm)'].max()))
petal_width = st.sidebar.slider("Petal width", float(df['petal width (cm)'].min()), float(df['petal width (cm)'].max()))


登录后复制

5。预测物种
获得用户输入后,我们将使用经过训练的模型进行预测:


# Prepare the input data
input_data = [[sepal_length, sepal_width, petal_length, petal_width]]

# Prediction
prediction = model.predict(input_data)
prediction_species = target_name[prediction[0]]

# Display the prediction
st.write("Prediction:")
st.write(f'Predicted species is {prediction_species}')


登录后复制

这看起来像:

Streamlit: The Magic Wand for ML App Creation

Streamlit: The Magic Wand for ML App Creation

最后,Streamlit 使创建和部署机器学习 Web 界面变得非常容易,并且花费最少的精力。 ?只需几行代码,我们就构建了一个交互式应用程序?允许用户输入特征并预测花的种类?使用机器学习模型。 ??

编码愉快! ?

以上是Streamlit:ML 应用程序创建的魔杖的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1670
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

学习Python:2小时的每日学习是否足够? 学习Python:2小时的每日学习是否足够? Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python标准库的哪一部分是:列表或数组? Python标准库的哪一部分是:列表或数组? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python vs. C:了解关键差异 Python vs. C:了解关键差异 Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Web开发的Python:关键应用程序 Web开发的Python:关键应用程序 Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

See all articles