用于数据分析的 Python 简介
在本周与肯尼亚 Lux Tech Academy 举行的一场引人入胜且内容丰富的会议中,我们全面介绍了用于数据和分析的 Python。
首先,您需要安装 Anaconda 下载并启动 Jupyter 笔记本。以下是下载 Anaconda/Jupyter Notebooks 的链接:Anaconda/Jupyter Notebooks 安装
我感觉自己就像一个容器,充满了所有这些知识的丰富,我将从中分享一些亮点。
元组是指有助于数据组织的内置数据类型,类似于列表,但更独特。它们是使用括号定义的;my_cars= (1,2,3)。元组表示不会随时间变化的固定项目集合,例如纬度和经度。与列表不同,元组不可修改;一旦定义,就无法更改或改变元组中的元素。
Python 列表还指内置的数据系统,使您能够将信息组织到与元组略有不同的某些类别中。以下是水果列表的示例: my_fruits=['mangos','apples','grapes']
列表可以存储不同数据类型的元素,它们的元素可以通过使用.apend()、.remove()等函数进行修改,因此可以在程序中动态增长。
NumPy 数组还提供了一种在 Python 库中存储大型数据集的有效方法,但与列表和元组的不同之处在于:它们仅存储相同数据类型的元素,它们使用更少的内存空间并且没有循环过程因为它们支持矢量化操作。
Python 中有多种处理内存使用的进程,但我们将主要关注垃圾收集。它通过删除程序不再需要的对象来保留内存。
1.垃圾收集可以通过:
引用计数:跟踪 Python 程序中指向特定对象的引用数量。当引用计数降到零时,对象使用的内存就会被丢弃。
2.循环集合:与后者类似,但用于对象循环引用的情况。
最后,我将对分析脚本中的函数进行一些说明。函数是可重用的代码行,可以单独调用它来执行相同的任务。基本语法是:
`def 函数名(操作)
代码块
描述函数
返回值
示例:
squared_list=[b**2 for b in range(1,10)]
打印(squared_list)`
输出:[1,4,9,16,49,64,81]
Jupyter Notebook 对初学者非常友好,所以我强烈推荐它。
这只是冰山一角,我迫不及待地想在下一堂课中了解更多信息。知识就是力量,让我们不断学习,不断建设,塑造自己更美好的未来!
以上是用于数据分析的 Python 简介的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
