首页 后端开发 Golang 深入研究:回文和连续块的递归解决方案

深入研究:回文和连续块的递归解决方案

Sep 26, 2024 am 06:35 AM

Diving Deep: Recursive Solutions for Palindromes and Contiguous Blocks

在本文中,我们将解决 Perl 每周挑战 #288 中的两个任务:找到最接近的回文并确定矩阵中最大连续块的大小。这两种解决方案都将在 Perl 和 Go 中递归实现。

目录

  1. 最近的回文
  2. 连续块
  3. 结论

最近的回文

第一个任务是找到最接近的不包含自身的回文。

最接近的回文被定义为最小化两个整数之间的绝对差的回文。

如果有多个候选者,则应返回最小的一个。

任务描述

输入: 字符串 $str,代表整数。

输出: 最接近的回文字符串。

示例

  • 输入:“123”
    输出:“121”

  • 输入: "2"
    输出:“1”
    有两个最接近的回文:“1”和“3”。因此,我们返回最小的“1”。

  • 输入:“1400”
    输出:“1441”

  • 输入:“1001”
    输出:“999”

解决方案

Perl 实现

在此实现中,我们利用递归方法来查找不等于原始数字的最接近的回文。递归函数探索原始数字的下限和上限:

  • 它检查当前候选(下级和上级)是否是有效的回文(并且不等于原始)。
  • 如果两个候选都无效,该函数会递归地递减较低的候选并递增较高的候选,直到找到有效的回文。

这种递归策略有效地缩小了搜索空间,确保我们在遵守问题约束的同时识别最接近的回文。

sub is_palindrome {
    my ($num) = @_;
    return $num eq reverse($num);
}

sub find_closest {
    my ($lower, $upper, $original) = @_;
    return $lower if is_palindrome($lower) && $lower != $original;
    return $upper if is_palindrome($upper) && $upper != $original;
    return find_closest($lower - 1, $upper + 1, $original) if $lower > 0;
    return $upper + 1;
}

sub closest_palindrome {
    my ($str) = @_;
    my $num = int($str);
    return find_closest($num - 1, $num + 1, $num);
}
登录后复制

实施

Go 实现遵循类似的递归策略。它还检查原始数字周围的候选数,使用递归来调整边界,直到找到有效的回文数。

package main

import (
    "strconv"
)

func isPalindrome(num int) bool {
    reversed := 0
    original := num

    for num > 0 {
        digit := num % 10
        reversed = reversed*10 + digit
        num /= 10
    }

    return original == reversed
}

func findClosest(lower, upper, original int) string {
    switch {
        case isPalindrome(lower) && lower != original:
            return strconv.Itoa(lower)
        case isPalindrome(upper) && upper != original:
            return strconv.Itoa(upper)
        case lower > 0:
            return findClosest(lower-1, upper+1, original)
        default:
            return strconv.Itoa(upper + 1)
    }
}

func closestPalindrome(str string) string {
    num, _ := strconv.Atoi(str)
    return findClosest(num-1, num+1, num)
}
登录后复制

Hier ist die erweiterte Definition für den 连续块:

连续块

第二个任务是确定给定矩阵中最大连续块的大小,其中所有单元格都包含 x 或 o。

连续块由包含相同符号的元素组成,这些元素与块中的其他元素共享边缘(不仅仅是角),从而创建一个连接区域。

任务描述

输入: 包含 x 和 o 的矩形矩阵。

输出:最大连续块的大小。

示例

  • 输入:

    [
        ['x', 'x', 'x', 'x', 'o'],
        ['x', 'o', 'o', 'o', 'o'],
        ['x', 'o', 'o', 'o', 'o'],
        ['x', 'x', 'x', 'o', 'o'],
    ]
    
    登录后复制

输出: 11
有一个包含 x 的 9 个连续单元格的块和一个包含 o 的 11 个连续单元格的块。

  • 输入:

    [
        ['x', 'x', 'x', 'x', 'x'],
        ['x', 'o', 'o', 'o', 'o'],
        ['x', 'x', 'x', 'x', 'o'],
        ['x', 'o', 'o', 'o', 'o'],
    ]
    
    登录后复制

输出: 11
有一个包含 x 的 11 个连续单元格的块和一个包含 o 的 9 个连续单元格的块。

  • 输入:

    [
        ['x', 'x', 'x', 'o', 'o'],
        ['o', 'o', 'o', 'x', 'x'],
        ['o', 'x', 'x', 'o', 'o'],
        ['o', 'o', 'o', 'x', 'x'],
    ]
    
    登录后复制

输出: 7
有一个包含 o 的 7 个连续单元格块、另外两个包含 o 的 2 单元格块、三个包含 x 的 2 单元格块和一个包含 x 的 3 单元格块。

解决方案

Perl 实现

在此实现中,我们利用递归深度优先搜索(DFS)方法来确定矩阵中最大连续块的大小。主函数初始化一个访问矩阵来跟踪哪些单元已被探索。它迭代每个单元格,每当遇到未访问的单元格时调用递归 DFS 函数。

DFS 函数探索当前单元格的所有四个可能的方向(上、下、左、右)。它通过在共享相同符号且尚未被访问的相邻单元上递归调用自身来计算连续块的大小。这种递归方法有效地聚合了块的大小,同时确保每个单元仅被计数一次。

sub largest_contiguous_block {
    my ($matrix) = @_;
    my $rows = @$matrix;
    my $cols = @{$matrix->[0]};
    my @visited = map { [(0) x $cols] } 1..$rows;

    my $max_size = 0;

    for my $r (0 .. $rows - 1) {
        for my $c (0 .. $cols - 1) {
            my $symbol = $matrix->[$r][$c];
            my $size = dfs($matrix, \@visited, $r, $c, $symbol);
            $max_size = $size if $size > $max_size;
        }
    }

    return $max_size;
}

sub dfs {
    my ($matrix, $visited, $row, $col, $symbol) = @_;

    return 0 if $row < 0 || $row >= @$matrix || $col < 0 || $col >= @{$matrix->[0]}
                || $visited->[$row][$col] || $matrix->[$row][$col] ne $symbol;

    $visited->[$row][$col] = 1;
    my $count = 1;

    $count += dfs($matrix, $visited, $row + 1, $col, $symbol);
    $count += dfs($matrix, $visited, $row - 1, $col, $symbol);
    $count += dfs($matrix, $visited, $row, $col + 1, $symbol);
    $count += dfs($matrix, $visited, $row, $col - 1, $symbol);

    return $count;
}
登录后复制

实施

Go 实现反映了这种递归 DFS 策略。它类似地遍历矩阵并使用递归来探索具有相同符号的连续单元格。

package main

func largestContiguousBlock(matrix [][]rune) int {
    rows := len(matrix)
    if rows == 0 {
        return 0
    }
    cols := len(matrix[0])
    visited := make([][]bool, rows)
    for i := range visited {
        visited[i] = make([]bool, cols)
    }

    maxSize := 0

    for r := 0; r < rows; r++ {
        for c := 0; c < cols; c++ {
            symbol := matrix[r][c]
            size := dfs(matrix, visited, r, c, symbol)
            if size > maxSize {
                maxSize = size
            }
        }
    }

    return maxSize
}

func dfs(matrix [][]rune, visited [][]bool, row, col int, symbol rune) int {
    if row < 0 || row >= len(matrix) || col < 0 || col >= len(matrix[0]) ||
        visited[row][col] || matrix[row][col] != symbol {
        return 0
    }

    visited[row][col] = true
    count := 1

    count += dfs(matrix, visited, row+1, col, symbol)
    count += dfs(matrix, visited, row-1, col, symbol)
    count += dfs(matrix, visited, row, col+1, symbol)
    count += dfs(matrix, visited, row, col-1, symbol)

    return count
}
登录后复制

Conclusion

In this article, we explored two intriguing challenges from the Perl Weekly Challenge #288: finding the closest palindrome and determining the size of the largest contiguous block in a matrix.

For the first task, both the Perl and Go implementations effectively utilized recursion to navigate around the original number, ensuring the closest palindrome was found efficiently.

In the second task, the recursive depth-first search approach in both languages allowed for a thorough exploration of the matrix, resulting in an accurate count of the largest contiguous block of identical symbols.

These challenges highlight the versatility of recursion as a powerful tool in solving algorithmic problems, showcasing its effectiveness in both Perl and Go. If you're interested in further exploration or have any questions, feel free to reach out!

You can find the complete code, including tests, on GitHub.

以上是深入研究:回文和连续块的递归解决方案的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1662
14
CakePHP 教程
1418
52
Laravel 教程
1311
25
PHP教程
1261
29
C# 教程
1234
24
Golang的目的:建立高效且可扩展的系统 Golang的目的:建立高效且可扩展的系统 Apr 09, 2025 pm 05:17 PM

Go语言在构建高效且可扩展的系统中表现出色,其优势包括:1.高性能:编译成机器码,运行速度快;2.并发编程:通过goroutines和channels简化多任务处理;3.简洁性:语法简洁,降低学习和维护成本;4.跨平台:支持跨平台编译,方便部署。

Golang和C:并发与原始速度 Golang和C:并发与原始速度 Apr 21, 2025 am 12:16 AM

Golang在并发性上优于C ,而C 在原始速度上优于Golang。1)Golang通过goroutine和channel实现高效并发,适合处理大量并发任务。2)C 通过编译器优化和标准库,提供接近硬件的高性能,适合需要极致优化的应用。

Golang vs. Python:主要差异和相似之处 Golang vs. Python:主要差异和相似之处 Apr 17, 2025 am 12:15 AM

Golang和Python各有优势:Golang适合高性能和并发编程,Python适用于数据科学和Web开发。 Golang以其并发模型和高效性能着称,Python则以简洁语法和丰富库生态系统着称。

Golang vs. Python:性能和可伸缩性 Golang vs. Python:性能和可伸缩性 Apr 19, 2025 am 12:18 AM

Golang在性能和可扩展性方面优于Python。1)Golang的编译型特性和高效并发模型使其在高并发场景下表现出色。2)Python作为解释型语言,执行速度较慢,但通过工具如Cython可优化性能。

Golang的影响:速度,效率和简单性 Golang的影响:速度,效率和简单性 Apr 14, 2025 am 12:11 AM

GoimpactsdevelopmentPositationalityThroughSpeed,效率和模拟性。1)速度:gocompilesquicklyandrunseff,ifealforlargeprojects.2)效率:效率:ITScomprehenSevestAndArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdEcceSteral Depentencies,增强开发的简单性:3)SimpleflovelmentIcties:3)简单性。

表演竞赛:Golang vs.C 表演竞赛:Golang vs.C Apr 16, 2025 am 12:07 AM

Golang和C 在性能竞赛中的表现各有优势:1)Golang适合高并发和快速开发,2)C 提供更高性能和细粒度控制。选择应基于项目需求和团队技术栈。

C和Golang:表演至关重要时 C和Golang:表演至关重要时 Apr 13, 2025 am 12:11 AM

C 更适合需要直接控制硬件资源和高性能优化的场景,而Golang更适合需要快速开发和高并发处理的场景。1.C 的优势在于其接近硬件的特性和高度的优化能力,适合游戏开发等高性能需求。2.Golang的优势在于其简洁的语法和天然的并发支持,适合高并发服务开发。

Golang和C:性能的权衡 Golang和C:性能的权衡 Apr 17, 2025 am 12:18 AM

Golang和C 在性能上的差异主要体现在内存管理、编译优化和运行时效率等方面。1)Golang的垃圾回收机制方便但可能影响性能,2)C 的手动内存管理和编译器优化在递归计算中表现更为高效。

See all articles