


AWS SnapStart - Part Measuring cold and warm starts with Java using different garbage collection algorithms
Introduction
In the previous parts of our series, we measured the cold starts of the Lambda function with Java 21 runtime without SnapStart enabled, with SnapStart enabled and also applied DynamoDB invocation priming optimization with different Lambda memory settings, Lambda deployment artifact sizes, Java compilation options, (a)synchronous HTTP clients and the usage of different Lambda layers. For all these measurements we used default garbage collection algorithms G1.
In this article we'd like to explore the impact of Java garbage collection algorithms on the performance of the Lambda function with Java 21 runtime. We'll also re-measure everything for the G1 to have comparable results with the same minor Java 21 version in use for all garbage collection algorithms.
Java Garbage collection algorithms
For our measurements we'll use the following Java collection algorithms with their default setting (please refer to the linked documentation for more detailed information about each algorithm):
- Garbage-First (G1) Garbage Collector. This is the garbage collection algorithm used by default. You can set it explicitly in AWS SAM template by adding -XX:+UseG1GC to the JAVA_TOOL_OPTIONS environment variable.
- The Parallel Collector. You can set it explicitly in AWS SAM template by adding -XX:+UseParallelGC to the JAVA_TOOL_OPTIONS environment variable.
- Shenandoah GC. Oracle JDK doesn't provide it, but Amazon Corretto 21 JDK does. You can set it explicitly in AWS SAM template by adding -XX:+UseShenandoahGC to the JAVA_TOOL_OPTIONS environment variable.
- The Z Garbage Collector. There are 2 different ZGC algorithms: default and the newer one- generational. You can set it explicitly in AWS SAM template by adding -XX:+UseZGC or -XX:+UseZGC -XX:+ZGenerational to the JAVA_TOOL_OPTIONS environment variable.
Measuring cold and warm starts with Java 21 using different garbage collection algorithms
In our experiment we'll use slightly modified application introduced in part 9. You can the find application code here. There are basically 2 Lambda functions which both respond to the API Gateway requests and retrieve product by id received from the API Gateway from DynamoDB. One Lambda function GetProductByIdWithPureJava21LambdaWithGCAlg can be used with and without SnapStart and the second one GetProductByIdWithPureJava21LambdaAndPrimingWithGCAlg uses SnapStart and DynamoDB request invocation priming.
The results of the experiment below were based on reproducing more than 100 cold and approximately 100.000 warm starts with experiment which ran for approximately 1 hour. For it (and experiments from my previous article) I used the load test tool hey, but you can use whatever tool you want, like Serverless-artillery or Postman. We run experiments by giving Lambda functions 1024 MB memory and using JAVA_TOOL_OPTIONS: "-XX:+TieredCompilation -XX:TieredStopAtLevel=1" (Java client compilation without profiling) which has a very good trade off between cold and warm start times.
Unfortunately I couldn't make Lambda function start with The Z Garbage Collector (with both default and generational one) running into the error :
Failed to commit memory (Operation not permitted) [error][gc] Forced to lower max Java heap size from 872M(100%) to 0M(0%) [error][gc] Failed to allocate initial Java heap (512M) Error: Could not create the Java Virtual Machine. Error: A fatal exception has occurred. Program will exit.
It tried out bigger memory setting as 1024 like 2048 MB and even more MBs, but the same error still appeared.
Let's look into the results of our measurements with other 3 garbage collection algorithms.
Abbreviation c is for the cold start and w is for the warm start.
Cold (c) and warm (w) start time without SnapStart enabled in ms:
GC Algorithm | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 3655.17 | 3725.25 | 3811.88 | 4019.25 | 4027.30 | 4027.83 | 5.46 | 6.10 | 7.10 | 16.79 | 48.06 | 1929.79 |
Parallel Collector | 3714.10 | 3789.09 | 3857.87 | 3959.44 | 4075.89 | 4078.25 | 5.55 | 6.20 | 7.10 | 15.38 | 130.13 | 2017.92 |
Shenandoah | 3963.40 | 4019.25 | 4096.30 | 4221.00 | 4388.78 | 4390.76 | 5.82 | 6.45 | 7.39 | 17.06 | 71.02 | 2159.21 |
Cold (c) and warm (w) start time with SnapStart enabled without Priming in ms:
GC Algorithm | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 1867.27 | 1935.68 | 2152.02 | 2416.57 | 2426.25 | 2427.35 | 5.47 | 6.11 | 7.05 | 17.41 | 51.24 | 1522.04 |
Parallel Collector | 1990.62 | 2047.12 | 2202.07 | 2402.12 | 2418.99 | 2419.32 | 5.68 | 6.35 | 7.45 | 18.04 | 147.83 | 1577.21 |
Shenandoah | 2195.47 | 2301.07 | 2563.37 | 3004.89 | 3029.01 | 3030.36 | 5.73 | 6.41 | 7.51 | 17.97 | 75.00 | 1843.34 |
Cold (c) and warm (w) start time with SnapStart enabled and with DynamoDB invocation Priming in ms:
GC Algorithm | c p50 | c p75 | c p90 | c p99 | c p99.9 | c max | w p50 | w p75 | w p90 | w p99 | w p99.9 | w max |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 833.50 | 875.34 | 1089.53 | 1205.26 | 1269.56 | 1269.8 | 5.46 | 6.10 | 7.16 | 16.39 | 46.19 | 499.13 |
Parallel Collector | 900.18 | 975.12 | 1058.41 | 1141.94 | 1253.17 | 1253.99 | 5.82 | 6.61 | 7.75 | 16.87 | 49.64 | 487.73 |
Shenandoah | 1065.84 | 1131.71 | 1331.96 | 1473.44 | 1553.59 | 1554.95 | 5.77 | 6.40 | 7.39 | 17.20 | 65.06 | 500.48 |
Conclusion
In this article we explored the impact of Java garbage collection algorithms (G1, Parallel Collector and Shenandoah) on the performance of the Lambda function with Java 21 runtime. We saw quite a bit of a difference between the performance of those algorithms. Using the default settings with G1 (default one) we experience ( sometimes by far) the lowest cold and warm start times. By using SnapStart with priming of the DynamoDB request the performance results are as expected much closer to each other.
Please refer to the documentation of each garbage collection algorithm to tune settings like mix and max memory which can provide significant improvement in performance and do your own measurements.
以上是AWS SnapStart - Part Measuring cold and warm starts with Java using different garbage collection algorithms的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

公司安全软件导致部分应用无法正常运行的排查与解决方法许多公司为了保障内部网络安全,会部署安全软件。...

将姓名转换为数字以实现排序的解决方案在许多应用场景中,用户可能需要在群组中进行排序,尤其是在一个用...

系统对接中的字段映射处理在进行系统对接时,常常会遇到一个棘手的问题:如何将A系统的接口字段有效地映�...

在使用IntelliJIDEAUltimate版本启动Spring...

在使用MyBatis-Plus或其他ORM框架进行数据库操作时,经常需要根据实体类的属性名构造查询条件。如果每次都手动...

Java对象与数组的转换:深入探讨强制类型转换的风险与正确方法很多Java初学者会遇到将一个对象转换成数组的�...

Redis缓存方案如何实现产品排行榜列表的需求?在开发过程中,我们常常需要处理排行榜的需求,例如展示一个�...

电商平台SKU和SPU表设计详解本文将探讨电商平台中SKU和SPU的数据库设计问题,特别是如何处理用户自定义销售属...
