Search And (LLM) Transform
This article shows an evolution of the "search and replace" feature from text editor,
where the "replace" step has been replaced by a LLM transformation.
The example is using GenAISCript.
It can be useful to batch apply text transformations that are not easily done with
regular expressions.
For example, when we added the ability to use a string command in
the exec command, we needed to convert all calls using argument arrays to this new syntax:
host.exec("cmd", ["arg0", "arg1", "arg2"])
to
host.exec(`cmd arg0 arg1 arg2`)`
While it's possible to match this function call with a regular expression
host\.exec\s*\([^,]+,\s*\[[^\]]+\]\s*\)
it's not easy to formulate the replacement string... unless you can describe it in natural language:
Convert the call to a single string command shell in TypeScript
Here are some example of the transformations where the LLM correctly handled variables.
- concatenate the arguments of a function call into a single string
- const { stdout } = await host.exec("git", ["diff"]) + const { stdout } = await host.exec(`git diff`)
- concatenate the arguments and use the ${} syntax to interpolate variables
- const { stdout: commits } = await host.exec("git", [ - "log", - "--author", - author, - "--until", - until, - "--format=oneline", - ]) + const { stdout: commits } = + await host.exec(`git log --author ${author} --until ${until} --format=oneline`)
Search
The search step is done with the workspace.grep
that allows to efficiently search for a pattern in files (this is the same search engine
that powers the Visual Studio Code search).
const { pattern, glob } = env.vars const patternRx = new RegExp(pattern, "g") const { files } = await workspace.grep(patternRx, glob)
Compute Transforms
The second step is to apply the regular expression to the file content
and pre-compute the LLM transformation of each match using an inline prompt.
const { transform } = env.vars ... const patches = {} // map of match -> transformed for (const file of files) { const { content } = await workspace.readText(file.filename) for (const match of content.matchAll(patternRx)) { const res = await runPrompt( (ctx) => { ctx.$` ## Task Your task is to transform the MATCH with the following TRANSFORM. Return the transformed text. - do NOT add enclosing quotes. ## Context ` ctx.def("MATCHED", match[0]) ctx.def("TRANSFORM", transform) }, { label: match[0], system: [], cache: "search-and-transform" } ) ...
Since the LLM sometimes decides to wrap the answer in quotes, we need to remove them.
... const transformed = res.fences?.[0].content ?? res.text patches[match[0]] = transformed
Transform
Finally, with the transforms pre-computed, we apply a final regex replace to
patch the old file content with the transformed strings.
const newContent = content.replace( patternRx, (match) => patches[match] ?? match ) await workspace.writeText(file.filename, newContent) }
Parameters
The script takes three parameters: a file glob, a pattern to search for, and a LLM transformation to apply.
We declare these parameters in the script metadata and extract them from the env.vars object.
script({ ..., parameters: { glob: { type: "string", description: "The glob pattern to filter files", default: "*", }, pattern: { type: "string", description: "The text pattern (regular expression) to search for", }, transform: { type: "string", description: "The LLM transformation to apply to the match", }, }, }) const { pattern, glob, transform } = env.vars
Running
To run this script, you can use the --vars option to pass the pattern and the transform.
genaiscript run st --vars 'pattern=host\.exec\s*\([^,]+,\s*\[[^\]]+\]\s*\)' 'transform=Convert the call to a single string command shell in TypeScript'
以上是Search And (LLM) Transform的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

不同JavaScript引擎在解析和执行JavaScript代码时,效果会有所不同,因为每个引擎的实现原理和优化策略各有差异。1.词法分析:将源码转换为词法单元。2.语法分析:生成抽象语法树。3.优化和编译:通过JIT编译器生成机器码。4.执行:运行机器码。V8引擎通过即时编译和隐藏类优化,SpiderMonkey使用类型推断系统,导致在相同代码上的性能表现不同。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

从C/C 转向JavaScript需要适应动态类型、垃圾回收和异步编程等特点。1)C/C 是静态类型语言,需手动管理内存,而JavaScript是动态类型,垃圾回收自动处理。2)C/C 需编译成机器码,JavaScript则为解释型语言。3)JavaScript引入闭包、原型链和Promise等概念,增强了灵活性和异步编程能力。

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Python和JavaScript在开发环境上的选择都很重要。1)Python的开发环境包括PyCharm、JupyterNotebook和Anaconda,适合数据科学和快速原型开发。2)JavaScript的开发环境包括Node.js、VSCode和Webpack,适用于前端和后端开发。根据项目需求选择合适的工具可以提高开发效率和项目成功率。
