Personalize for each user with Streamlit in Snowflake (SiS)
Introduction
At the end of July 2024, Current_User and Row Access Policy became available in Streamlit in Snowflake.
The exciting part of this update is that it's now easy and secure to identify the Snowflake user connected to the application and customize processing for each user.
Without needing to set up a custom login mechanism or user management table, you can personalize a single application for each user in ways like:
- Changing the application display for each user
- Preparing personalized analysis dashboards for each user
- Using row access policies to get different query output results for each user (Enterprise Edition and above)
In this post, we'll create a simple ToDo list that displays individual user information.
Note: This post represents my personal views and not those of Snowflake.
Feature Overview
Goals
- Manage personal ToDo lists using a single shared app
- Use row access policy to prevent other people's ToDos from being displayed
Completed Image
User TKANNO's screen
User TARO's screen
Prerequisites
- Snowflake account
- Enterprise Edition account is required to use row access policy
Note
- Streamlit in Snowflake runs with owner privileges, so Current_Role will be the same as the Streamlit in Snowflake application role. (Therefore, it cannot be used for personalization)
Procedure
Create a table to store the ToDo list
Execute the following command from a worksheet:
-- Create ToDo list table CREATE TABLE IF NOT EXISTS todo_list ( id INT AUTOINCREMENT, task VARCHAR(255), status VARCHAR(20), due_date DATE, completed_date DATE, owner VARCHAR(50) );
Create a row access policy
This policy returns rows where the owner in the todo_list table matches the current_user connected to the Streamlit in Snowflake application.
Execute the following command from the worksheet:
-- Create row access policy CREATE ROW ACCESS POLICY IF NOT EXISTS todo_row_access_policy AS (owner VARCHAR) RETURNS BOOLEAN -> owner = CURRENT_USER();
Apply the row access policy
Execute the following command from the worksheet:
-- Apply row access policy ALTER TABLE todo_list ADD ROW ACCESS POLICY todo_row_access_policy ON (owner);
This completes the worksheet operations.
Run the Streamlit in Snowflake app
Create a new Streamlit in Snowflake app and copy & paste the following code:
Line 14 is where the current user connected to the app is retrieved as a string.
import streamlit as st from snowflake.snowpark.context import get_active_session import pandas as pd # Layout settings st.set_page_config( layout="wide" ) # Get Snowflake session session = get_active_session() # Get current user current_user = session.sql("SELECT CURRENT_USER()").collect()[0][0] # Get ToDo list def get_todo_list(): return session.table("todo_list").to_pandas() # Add or update task def upsert_task(task_id, task, status, due_date, completed_date): due_date_sql = f"'{due_date}'" if due_date else "NULL" completed_date_sql = f"'{completed_date}'" if completed_date else "NULL" if task_id: session.sql(f""" UPDATE todo_list SET task = '{task}', status = '{status}', due_date = {due_date_sql}, completed_date = {completed_date_sql} WHERE id = {task_id} """).collect() else: session.sql(f""" INSERT INTO todo_list (task, status, owner, due_date, completed_date) VALUES ('{task}', '{status}', '{current_user}', {due_date_sql}, {completed_date_sql}) """).collect() # Delete task def delete_task(task_id): session.sql(f"DELETE FROM todo_list WHERE id = {task_id}").collect() # Main function def main(): st.title(f"{current_user}'s Personal Dashboard") # Task list st.subheader(f"{current_user}'s ToDo List") todo_df = get_todo_list() # Display header col1, col2, col3, col4, col5 = st.columns([3, 2, 2, 2, 2]) col1.write("Task") col2.write("Status") col3.write("Due Date") col4.write("Completed Date") col5.write("Delete") # Display task list for _, row in todo_df.iterrows(): col1, col2, col3, col4, col5 = st.columns([3, 2, 2, 2, 2]) with col1: task = st.text_input("task", value=row['TASK'], key=f"task_{row['ID']}", label_visibility="collapsed") with col2: status = st.selectbox("status", ["Pending", "In Progress", "Completed"], index=["Pending", "In Progress", "Completed"].index(row['STATUS']), key=f"status_{row['ID']}", label_visibility="collapsed") with col3: due_date = st.date_input("due_date", value=pd.to_datetime(row['DUE_DATE']).date() if pd.notna(row['DUE_DATE']) else None, key=f"due_date_{row['ID']}", label_visibility="collapsed") with col4: completed_date = st.date_input("comp_date", value=pd.to_datetime(row['COMPLETED_DATE']).date() if pd.notna(row['COMPLETED_DATE']) else None, key=f"completed_date_{row['ID']}", label_visibility="collapsed") with col5: if st.button("Delete", key=f"delete_{row['ID']}"): delete_task(row['ID']) st.experimental_rerun() # Update database immediately if values change if task != row['TASK'] or status != row['STATUS'] or due_date != row['DUE_DATE'] or completed_date != row['COMPLETED_DATE']: upsert_task(row['ID'], task, status, due_date, completed_date) st.experimental_rerun() # Add new task st.subheader("Add New Task") new_task = st.text_input("New Task") new_status = st.selectbox("Status", ["Pending", "In Progress", "Completed"]) new_due_date = st.date_input("Due Date") if st.button("Add"): upsert_task(None, new_task, new_status, new_due_date, None) st.success("New task added") st.experimental_rerun() # Main process if __name__ == "__main__": main()
Conclusion
What do you think? By combining Current_User and row access policy, you can create a secure application personalized for each user with simple steps. This opens up possibilities for creating even more user-friendly applications based on your ideas.
Some advanced ideas include adding Current_User information as a signature when writing to tables via Streamlit in Snowflake, or using personalized information as context for Cortex LLM to create a personal assistant.
Please try challenging yourself with interesting uses of Current_User!
Announcements
Snowflake What's New Updates on X
I'm sharing Snowflake's What's New updates on X. Please feel free to follow if you're interested!
English Version
Snowflake What's New Bot (English Version)
https://x.com/snow_new_en
Japanese Version
Snowflake What's New Bot (Japanese Version)
https://x.com/snow_new_jp
Change History
(20240914) Initial post
Original Japanese Article
https://zenn.dev/tsubasa_tech/articles/a23029dfe97c46
以上是Personalize for each user with Streamlit in Snowflake (SiS)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
