首页 后端开发 C++ C 中的不相交联合

C 中的不相交联合

Sep 10, 2024 am 10:44 AM

Disjoint Unions in C

目前还不清楚如何在 C 中表达此 Haskell 类型:

data Tree = Leaf Int | Inner Tree Tree
登录后复制

与 Haskell 和 Rust 等语言不同,C 缺乏对
的内置支持 不相交的联合。然而,如果我们愿意做一些额外的输入,它确实提供了代表它们所需的所有成分。

首先要认识到的是,不相交的并集包括:

  • 许多不同的变体
  • 每个都有一些与之关联的数据

在我们的二叉树示例中,我们有两个变体:“叶子”和“内部”。叶变量存储单个整数(其数据),内部变量存储两棵树(代表其左子树和右子树)。

我们可以使用具有两个字段的结构在 C 中表示这样的动物:

  1. “类型标签”,通常是整数,指示所表示的变体。
  2. data 字段,用于存储与变体相关的数据。

使用枚举定义不同的变体类型标签很方便:

enum tree_type {
        TREE_LEAF,
        TREE_INNER,
};
登录后复制

存储数据怎么样?这就是工会存在要解决的问题类型。

工会

联合只是一块能够存储多种不同类型数据的内存。例如,这是一个可以存储 32 位 int 或 5 个字符数组的联合。

union int_or_chars {
        int num;
        char letters[5];
};
登录后复制

类型为 union int_or_chars 的变量可以在任何特定时间保存 int 或 5 个字符的数组(但不能同时保存):

union int_or_chars quux;

// We can store an int:
quux.num = 42;
printf("quux.num = %d\n", quux.num);
// => quux.num = 42

// Or 5 chars:
quux.letters[0] = 'a';
quux.letters[1] = 'b';
quux.letters[2] = 'c';
quux.letters[3] = 'd';
quux.letters[4] = 0;
printf("quux.letters = %s\n", quux.letters);
// => quux.letters = abcd

// But not both. The memory is "shared", so the chars saved above are
// now being interpreted as an int:
printf("quux.num = %x\n", quux.num);
// quux.num = 64636261

return 0;
登录后复制

像 union int_or_chars 这样的联合拥有足够大的内存块可供使用,可以容纳其最大的成员。这是显示其工作原理的示意图:

+ ---- + ---- + ---- + ---- + ---- +
| byte |      |      |      |      |
+ ---- + ---- + ---- + ---- + ---- +
|<--   int uses these 4  -->|
|<--  array of chars uses all 5 -->|
登录后复制

这有助于解释为什么在我们在 quux 中存储字符数组后打印 quux.num 会导致“垃圾”:它不是垃圾,而是字符串“abcd”被解释为整数。 (在我的机器上,quux.num 以十六进制打印为 64636261。字符“a”的 ASCII 值为 0x61,“b”的值为 0x62,“c”为 0x63,“d”为 0x64。由于我的处理器是小端字节序,所以顺序颠倒了。)

关于联合的最后一点,您可能会对 sizeof 报告的大小感到惊讶:

printf("%ld\n", sizeof(union int_or_chars));
// => 8
登录后复制

在我的机器上,union int_or_chars 类型的大小为 8 个字节,而不是我们预期的 5 个字节。由于我的处理器架构规定的对齐要求,已添加一些填充。

返回二叉树

我们现在准备继续将二叉树类型从 Haskell 转换为 C。我们已经定义了一个枚举来表示变体的类型。现在我们需要一个联合来存储其数据:

union tree_data {
        int leaf;
        struct inner_data inner;
};
登录后复制
登录后复制

其中 struct inner_data 是包含“内部”变体的左右子级的结构:

struct inner_data {
        struct tree *left;
        struct tree *right;
};
登录后复制

请注意,“内部”变体维护着指向其左子节点和右子节点的指针。间接是必要的,因为否则结构树将没有固定的大小。

这些部分就位后,我们就可以定义我们的树类型了:

enum tree_type {
        TREE_LEAF,
        TREE_INNER,
};

struct tree;
struct inner_data {
        struct tree *left;
        struct tree *right;
};

union tree_data {
        int leaf;
        struct inner_data inner;
};

// A representation of a binary tree.
struct tree {
        enum tree_type type;
        union tree_data data;
};
登录后复制

和树玩耍

让我们编写一些函数来构造树:

// Construct a leaf node.
struct tree *leaf(int value) {
        struct tree *t = malloc(sizeof(*t));
        t->type = TREE_LEAF;
        t->data.leaf = value;
        return t;
}

// Construct an inner node.
struct tree *inner(struct tree *left, struct tree *right) {
        struct tree *t = malloc(sizeof(*t));
        t->type = TREE_INNER;
        t->data.inner.left = left;
        t->data.inner.right = right;
        return t;
}
登录后复制

并打印它们:

void print_tree(struct tree *t) {
        switch (t->type) {
        case TREE_LEAF:
                printf("%d", t->data.leaf);
                return;
        case TREE_INNER:
                printf("(");
                print_tree(t->data.inner.left);
                printf(" ");
                print_tree(t->data.inner.right);
                printf(")");
                return;
        }
}
登录后复制

这使我们能够翻译 Haskell 表达式:

Inner (Inner (Leaf 1) (Leaf 2)) (Leaf 3)
登录后复制

转换成 C 为:

inner(inner(leaf(1), leaf(2)), leaf(3));
登录后复制

例如:

struct tree *t = inner(inner(leaf(1), leaf(2)), leaf(3));
print_tree(t);
// => ((1 2) 3)
登录后复制

作为一个稍微有趣的例子,我们来翻译一下这个深度优先搜索函数:

-- Check if a value is in a tree.
search :: Int -> Tree -> Bool
search v (Leaf w) = v == w
search v (Inner l r) = search v l || search v r
登录后复制

使用我们的树类型:

// Check if a value is in a tree.
int search(int value, struct tree *t) {
        switch (t->type) {
        case TREE_LEAF:
                return t->data.leaf == value;
        case TREE_INNER:
                return (
                        search(value, t->data.inner.left) ||
                        search(value, t->data.inner.right)
                );
        }
}
登录后复制

这当然更冗长,但翻译过程很简单(编译器大概可以为我们做这种事情......)。

权衡

我们最后稍微题外话一下替代表示中涉及的权衡。具体来说,假设不是:

union tree_data {
        int leaf;
        struct inner_data inner;
};
登录后复制
登录后复制

我们使用:

union tree_data {
        int leaf;
        struct inner_data *inner;
        //                ^ The difference.
};
登录后复制

在第一种情况下,联合体包含一个结构体inner_data,而在第二种情况下,它存储一个指向该结构体的指针。因此,第一个联合体稍大一些,为 16 字节,而我的机器上的指针版本为 8 字节。不幸的是,受影响的不仅仅是内部节点:叶节点使用相同的 16 字节联合,但仅存储单个(4 字节)int。感觉有点浪费。

然而,这并不是故事的全部。每次访问内部节点的左子节点和右子节点时,我们都会为额外的间接寻址付出代价:读取不一定便宜,特别是在指向的内存未缓存的情况下。

我怀疑这里提出的主要方法在大多数情况下是一个更好的起点,并且尝试削减一些字节(白色导致额外的读取)是不值得的,直到它成为现实。

以上是C 中的不相交联合的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1662
14
CakePHP 教程
1419
52
Laravel 教程
1311
25
PHP教程
1262
29
C# 教程
1234
24
C#与C:历史,进化和未来前景 C#与C:历史,进化和未来前景 Apr 19, 2025 am 12:07 AM

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C和XML的未来:新兴趋势和技术 C和XML的未来:新兴趋势和技术 Apr 10, 2025 am 09:28 AM

C 和XML的未来发展趋势分别为:1)C 将通过C 20和C 23标准引入模块、概念和协程等新特性,提升编程效率和安全性;2)XML将继续在数据交换和配置文件中占据重要地位,但会面临JSON和YAML的挑战,并朝着更简洁和易解析的方向发展,如XMLSchema1.1和XPath3.1的改进。

继续使用C:耐力的原因 继续使用C:耐力的原因 Apr 11, 2025 am 12:02 AM

C 持续使用的理由包括其高性能、广泛应用和不断演进的特性。1)高效性能:通过直接操作内存和硬件,C 在系统编程和高性能计算中表现出色。2)广泛应用:在游戏开发、嵌入式系统等领域大放异彩。3)不断演进:自1983年发布以来,C 持续增加新特性,保持其竞争力。

C多线程和并发:掌握并行编程 C多线程和并发:掌握并行编程 Apr 08, 2025 am 12:10 AM

C 多线程和并发编程的核心概念包括线程的创建与管理、同步与互斥、条件变量、线程池、异步编程、常见错误与调试技巧以及性能优化与最佳实践。1)创建线程使用std::thread类,示例展示了如何创建并等待线程完成。2)同步与互斥使用std::mutex和std::lock_guard保护共享资源,避免数据竞争。3)条件变量通过std::condition_variable实现线程间的通信和同步。4)线程池示例展示了如何使用ThreadPool类并行处理任务,提高效率。5)异步编程使用std::as

C和XML:探索关系和支持 C和XML:探索关系和支持 Apr 21, 2025 am 12:02 AM

C 通过第三方库(如TinyXML、Pugixml、Xerces-C )与XML交互。1)使用库解析XML文件,将其转换为C 可处理的数据结构。2)生成XML时,将C 数据结构转换为XML格式。3)在实际应用中,XML常用于配置文件和数据交换,提升开发效率。

C深度潜水:掌握记忆管理,指针和模板 C深度潜水:掌握记忆管理,指针和模板 Apr 07, 2025 am 12:11 AM

C 的内存管理、指针和模板是核心特性。1.内存管理通过new和delete手动分配和释放内存,需注意堆和栈的区别。2.指针允许直接操作内存地址,使用需谨慎,智能指针可简化管理。3.模板实现泛型编程,提高代码重用性和灵活性,需理解类型推导和特化。

现代C设计模式:构建可扩展和可维护的软件 现代C设计模式:构建可扩展和可维护的软件 Apr 09, 2025 am 12:06 AM

现代C 设计模式利用C 11及以后的新特性实现,帮助构建更灵活、高效的软件。1)使用lambda表达式和std::function简化观察者模式。2)通过移动语义和完美转发优化性能。3)智能指针确保类型安全和资源管理。

C社区:资源,支持和发展 C社区:资源,支持和发展 Apr 13, 2025 am 12:01 AM

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业

See all articles