首页 后端开发 Python教程 Python 代码片段

Python 代码片段

Sep 07, 2024 pm 02:31 PM

Python Code Snippets

数组

列表

# Creating a list
my_list = []
my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

# List of different data types
mixed_list = [1, "hello", 3.14, True]

# Accessing elements
print(my_list[0])  # Output: 1
print(my_list[-1]) # Output: 5

# Append to the end
my_list.append(6)

# Insert at a specific position
my_list.insert(2, 10)

# Find an element in an array
index=my_list.find(element)

# Remove by value
my_list.remove(10)

# Remove by index
removed_element = my_list.pop(2)

# Length of the list
print(len(my_list))

# Slicing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# sequence[start:stop:step]

print(my_list[1:4])  # Output: [1, 2, 3]
print(my_list[5:])  # Output: [5, 6, 7, 8, 9]
print(my_list[:5])  # Output: [0, 1, 2, 3, 4]
print(my_list[::2])  # Output: [0, 2, 4, 6, 8]
print(my_list[-4:])  # Output: [6, 7, 8, 9]
print(my_list[:-4])  # Output: [0, 1, 2, 3, 4, 5]
print(my_list[::-1])  # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
print(my_list[8:2:-2])  # Output: [8, 6, 4]
print(my_list[1:8:2])  # Output: [1, 3, 5, 7]
print(my_list[-2:-7:-1])  # Output: [8, 7, 6, 5, 4]

# Reversing a list
my_list.reverse()

# Sorting a list
my_list.sort()
登录后复制

排列组合

import itertools

# Example list
data = [1, 2, 3]

# Generating permutations of the entire list
perms = list(itertools.permutations(data))
print(perms)
# Output: [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

# Generating permutations of length 2
perms_length_2 = list(itertools.permutations(data, 2))
print(perms_length_2)
# Output: [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]

combinations(iterable, r) #order does not matter

登录后复制

手动生成排列
您还可以使用递归手动生成排列。这是一个简单的实现:

def permute(arr):
    result = []

    # Base case: if the list is empty, return an empty list
    if len(arr) == 0:
        return [[]]

    # Recursive case
    for i in range(len(arr)):
        elem = arr[i]
        rest = arr[:i] + arr[i+1:]
        for p in permute(rest):
            result.append([elem] + p)

    return result
登录后复制

(列表可以用作堆栈)

st=[]
st.append()
st.pop()
top_element = stack[-1]
登录后复制

尖端

1) 脱衣:
它用于从字符串中删除前导和尾随空格(或其他指定字符)

#EX. (1,2) to 1,2
s.strip('()')
登录后复制

2)不要使用普通词典

from collections import defaultdict
dictionary=defaultdict(int)
登录后复制

3) 重要检查和转换

s.isdigit()
s.isalpha()
s.isalnum()
s.islower()
s.isupper()
s.lower()
s.upper()
登录后复制

4) 重要

round(number, decimal_digits)
ord(each)-ord('a')+1 # value of an alphabet
#/ (Floating-Point Division)
#// (Floor Division)
maxim = float('-inf')
minim = float('inf')
unique_lengths.sort(reverse=True)
s.count('x')

list1 = [1, 2, 3]
iterable = [4, 5, 6]
list1.extend(iterable)

position.replace('(', '').replace(')', '')

expression = "2 + 3 * 4"
result = eval(expression)
print(result) 

#Determinant
import numpy as 
arr=[[1,2,3],[3,4,5],[5,6,7]]
print(np.linalg.det(np.array(arr)))
登录后复制

已排序

my_list = [3, 1, 4, 1, 5]
sorted_list = sorted(my_list)

my_tuple = (3, 1, 4, 1, 5)
sorted_list = sorted(my_tuple)

my_dict = {'apple': 3, 'banana': 1, 'cherry': 2}
sorted_keys = sorted(my_dict)

my_list = [3, 1, 4, 1, 5]
sorted_list = sorted(my_list, reverse=True)
登录后复制

枚举

my_list = ['a', 'b', 'c']
for index, value in enumerate(my_list):
    print(index, value)
登录后复制

通过对象引用传递

不可变类型(如整数、字符串、元组):

def modify_immutable(x):
    x = 10  # Rebinding the local variable to a new object
    print("Inside function:", x)

a = 5
modify_immutable(a) #prints 10
print("Outside function:", a) #prints 5
登录后复制

可变类型(如列表、字典、集合):

def modify_mutable(lst):
    lst.append(4)  # Modifying the original list object
    print("Inside function:", lst)

my_list = [1, 2, 3]
modify_mutable(my_list) # [1,2,3]
print("Outside function:", my_list) # [1,2,3,4]
登录后复制

Numpy 数组(用于数值运算)

import numpy as np

# Creating a 1D array
arr_1d = np.array([1, 2, 3, 4, 5])

# Creating a 2D array
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])

# Creating an array filled with zeros
zeros = np.zeros((3, 4))

# Creating an array filled with ones
ones = np.ones((2, 3))

# Creating an array with a range of values
range_arr = np.arange(0, 10, 2)

# Creating an array with evenly spaced values
linspace_arr = np.linspace(0, 1, 5)

# Creating an identity matrix
identity_matrix = np.eye(3)

# Shape of the array
shape = arr_2d.shape  # Output: (2, 3)

# Size of the array (total number of elements)
size = arr_2d.size  # Output: 6

# Element-wise addition
arr_add = arr_1d + 5  # Output: array([6, 7, 8, 9, 10])

# Element-wise subtraction
arr_sub = arr_1d - 2  # Output: array([ -1, 0, 1, 2, 3])

# Element-wise multiplication
arr_mul = arr_1d * 2  # Output: array([ 2, 4, 6, 8, 10])

# Element-wise division
arr_div = arr_1d / 2  # Output: array([0.5, 1. , 1.5, 2. , 2.5])

# Sum
total_sum = np.sum(arr_2d)  # Output: 21

# Mean
mean_value = np.mean(arr_2d)  # Output: 3.5

# Standard deviation
std_dev = np.std(arr_2d)  # Output: 1.707825127659933

# Maximum and minimum
max_value = np.max(arr_2d)  # Output: 6
min_value = np.min(arr_2d)  # Output: 1

# Reshaping
reshaped_arr = arr_1d.reshape((5, 1))

# Flattening
flattened_arr = arr_2d.flatten()

# Transposing
transposed_arr = arr_2d.T

# Indexing
element = arr_2d[1, 2]  # Output: 6

# Slicing
subarray = arr_2d[0:2, 1:3]  # Output: array([[2, 3], [5, 6]])
登录后复制

阿斯型

它是 NumPy 中的一个函数,用于将 numpy 数组转换为不同的数据类型。

# Datatypes: np.int32,np.float32,np.float64,np.str_
import numpy as np

# Create an integer array
int_array = np.array([1, 2, 3, 4, 5], dtype=np.int32)

# Convert to float
float_array = int_array.astype(np.float32)

print("Original array:", int_array)
print("Converted array:", float_array)
登录后复制

重塑

它是一个强大的工具,可以在不改变数据的情况下改变数组的形状

import numpy as np

# Create a 1D array
array = np.arange(12)

# Reshape to a 2D array (3 rows x 4 columns)
reshaped_array = array.reshape((3, 4))
登录后复制

Matplotlib

import numpy as np
import matplotlib.pyplot as plt

# Create a random 2D array
data = np.random.rand(10, 10)

# Create a figure with a specific size and resolution
plt.figure(figsize=(8, 6), dpi=100)

# Display the 2D array as an image
plt.imshow(data, cmap='viridis', interpolation='nearest')

# Add a color bar to show the scale of values
plt.colorbar()

# Show the plot
plt.show()
登录后复制

字典

# Creating an empty dictionary
# Maintains ascending order like map in cpp
my_dict = {}

# Creating a dictionary with initial values
my_dict = {'name': 'Alice', 'age': 25, 'city': 'New York'}

# Creating a dictionary using the dict() function
my_dict = dict(name='Alice', age=25, city='New York')

# Accessing a value by key
name = my_dict['name']  # Output: 'Alice'

# Using the get() method to access a value
age = my_dict.get('age')  # Output: 25
country = my_dict.get('country')  # Output: None

# Adding a new key-value pair
my_dict['email'] = 'alice@example.com'

# Updating an existing value
my_dict['age'] = 26

# Removing a key-value pair using pop()
age = my_dict.pop('age')  # Removes 'age' and returns its value

# Getting all keys in the dictionary
keys = my_dict.keys()  # Output: dict_keys(['name', 'email'])

# Getting all values in the dictionary
values = my_dict.values()  # Output: dict_values(['Alice', 'alice@example.com'])

# Iterating over keys
for key in my_dict:
    print(key)

# Iterating over values
for value in my_dict.values():
    print(value)

# Iterating over key-value pairs
for key, value in my_dict.items():
    print(f"{key}: {value}")
登录后复制

默认字典

from collections import defaultdict

d = defaultdict(int)

# Initializes 0 to non-existent keys
d['apple'] += 1
d['banana'] += 2
登录后复制

# Creating an empty set
my_set = set()

# Creating a set with initial values
my_set = {1, 2, 3, 4, 5}

# Creating a set from a list
my_list = [1, 2, 3, 4, 5]
my_set = set(my_list)

# Creating a set from a string
my_set = set('hello')  # Output: {'e', 'h', 'l', 'o'}

# Adding an element to a set
my_set.add(6)  # my_set becomes {1, 2, 3, 4, 5, 6}

# Removing an element from a set (raises KeyError if not found)
my_set.remove(3)  # my_set becomes {1, 2, 4, 5, 6}

# Removing and returning an arbitrary element from the set
element = my_set.pop()  # Returns and removes an arbitrary element
登录后复制

细绳

# Single quotes
str1 = 'Hello'

# Double quotes
str2 = "World"

# Triple quotes for multi-line strings
str3 = '''This is a 
multi-line string.'''

# Raw strings (ignores escape sequences)
raw_str = r'C:\Users\Name'

str1 = 'Hello'

# Accessing a single character
char = str1[1]  # 'e'

# Accessing a substring (slicing)
substring = str1[1:4]  # 'ell'

# Negative indexing
last_char = str1[-1]  # 'o'

# Using + operator
concatenated = 'Hello' + ' ' + 'World'  # 'Hello World'

# Using join method
words = ['Hello', 'World']
concatenated = ' '.join(words)  # 'Hello World'

name = 'Alice'
age = 25

# String formatting
formatted_str = f'My name is {name} and I am {age} years old.'

# Convert to uppercase
upper_str = str1.upper()  # 'HELLO WORLD'

# Convert to lowercase
lower_str = str1.lower()  # 'hello world'

# Convert to capitalize
capital_str = str1.capitalize()  # 'Hello world'

str1 = '  Hello World  '

# Remove leading and trailing whitespace
trimmed = str1.strip()  # 'Hello World'

str1 = 'Hello World Python'

# Split the string into a list of substrings
split_list = str1.split()  # ['Hello', 'World', 'Python']

# Split the string with a specific delimiter
split_list = str1.split(' ')  # ['Hello', 'World', 'Python']

# Join a list of strings into a single string
joined_str = ' '.join(split_list)  # 'Hello World Python'

str1 = 'Hello World'

# Find the position of a substring
pos = str1.find('World')  # 6


str1 = 'Hello123'

# Check if all characters are alphanumeric
is_alnum = str1.isalnum()  # True

# Check if all characters are alphabetic
is_alpha = str1.isalpha()  # False

# Check if all characters are digits
is_digit = str1.isdigit()  # False

# Check if all characters are lowercase
is_lower = str1.islower()  # False

# Check if all characters are uppercase
is_upper = str1.isupper()  # False
登录后复制

保持联系!
如果您喜欢这篇文章,请不要忘记在社交媒体上关注我以获取更多更新和见解:

推特: madhavganesan
Instagram:madhavganesan
领英: madhavganesan

以上是Python 代码片段的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1662
14
CakePHP 教程
1419
52
Laravel 教程
1311
25
PHP教程
1262
29
C# 教程
1234
24
Python vs.C:申请和用例 Python vs.C:申请和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法 2小时的Python计划:一种现实的方法 Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:游戏,Guis等 Python:游戏,Guis等 Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

您可以在2小时内学到多少python? 您可以在2小时内学到多少python? Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python与C:学习曲线和易用性 Python与C:学习曲线和易用性 Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和时间:充分利用您的学习时间 Python和时间:充分利用您的学习时间 Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:探索其主要应用程序 Python:探索其主要应用程序 Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

See all articles