详解Python迭代和迭代器
我们将要来学习python的重要概念迭代和迭代器,通过简单实用的例子如列表迭代器和xrange。
可迭代
一个对象,物理或者虚拟存储的序列。list,tuple,strins,dicttionary,set以及生成器对象都是可迭代的,整型数是不可迭代的。如果你不确定哪个可迭代哪个不可以,你需要用python内建的iter()来帮忙。
>>> iter([1,2,3]) <listiterator object at 0x026C8970> >>> iter({1:2, 2:4}) <dictionary-keyiterator object at 0x026CC1B0> >>> iter(1234) Traceback (most recent call last): File "<pyshell#145>", line 1, in <module> iter(1234) TypeError: 'int' object is not iterable
iter()为list返回了listiterator对象,为dictionary返回了dictionary-keyiterator对象。类似对其他可迭代类型也会返回迭代器对象。
iter()用在自定义的类型会怎样呢?我们先自己定义一个String类:
class String(object): def __init__(self, val): self.val = val def __str__(self): return self.val st = String('sample string')
那么,st是可迭代的吗?
>>> iter(st) TypeError: 'String' object is not iterable
你可能会有几个问题要问:
怎么让自定义的类型可迭代?
iter()究竟做了些什么?
让我们补充String类来找找答案
class String(object): def __init__(self, val): self.val = val def __str__(self): return self.val def __iter__(self): print "This is __iter__ method of String class" return iter(self.val) #self.val is python string so iter() will return it's iterator >>> st = String('Sample String') >>> iter(st) This is __iter__ method of String class <iterator object at 0x026C8150>
在String类中需要一个'__iter__'方法把String类型变成可迭代的,这就是说'iter'内部调用了'iterable.__iter__()'
别急,不是只有增加'__iter()'方法这一种途径
class String(object): def __init__(self, val): self.val = val def __str__(self): return self.val def __getitem__(self, index): return self.val[index] >>> st = String('Sample String') >>> iter(st) <iterator object at 0x0273AC10>
‘itr'也会调用'iterable.__getitem__()',所以我们用'__getitem__'方法让String类型可迭代。
如果在String类中同时使用'__iter__()'和'__getitem__()',就只有'__iter__'会起作用。
自动迭代
for循环会自动迭代
for x in iterable: print x
我们可以不用for循环来实现吗?
def iterate_while(iterable): index = 0 while(i< len(iterable)): print iterable[i] i +=1
这样做对list和string是管用的,但对dictionary不会奏效,所以这绝对不是python式的迭代,也肯定不能模拟for循环的功能。我们先看迭代器,等下回再过头来。
迭代器
关于迭代器先说几条………..
1. 迭代器对象在迭代过程中会会产生可迭代的值,`next()`或者`__next()__`是迭代器用来产生下一个值的方法。
2. 它会在迭代结束后发出StopIteration异常。
3. `iter()`函数返回迭代器对象
4. 如果`iter()`函数被用在迭代器对象,它会返回对象本身
我们试一试模仿for循环
def simulate_for_loop(iterable): it = iter(iterable) while(True): try: print next(it) except StopIteration: break >>> simulate_for_loop([23,12,34,56]) 23 12 34 56
前面我们看过了iterable类,我们知道iter会返回迭代器对象。
现在我们试着理解迭代器类的设计。
class Iterator: def __init__(self, iterable) self.iterable = iterable . . def __iter__(self): #iter should return self if called on iterator return self def next(self): #Use __next__() in python 3.x if condition: #it should raise StopIteration exception if no next element is left to return raise StopIteration
我们学了够多的迭代和迭代器,在python程序中不会用到比这更深的了。
但是为了学习的目的我们就到这儿。。。。
列表迭代器
你可能会在面试中写这个,所以打起精神来注意了
class list_iter(object): def __init__(self, list_data): self.list_data = list_data self.index = 0 def __iter__(self): return self def next(self): #Use __next__ in python 3.x if self.index < len(self.list_data): val = self.list_data[self.index] self.index += 1 return val else: raise StopIteration()
我们来用`list_iter`自己定义一个列表迭代器
class List(object): def __init__(self, val): self.val = val def __iter__(self): return list_iter(self.val) >>> ls = List([1,2,34]) >>> it = iter(ls) >>> next(it) 1 >>> next(it) 2 >>> next(it) 34 >>> next(it) Traceback (most recent call last): File "<pyshell#254>", line 1, in <module> next(it) File "<pyshell#228>", line 13, in next raise StopIteration() StopIteration
xrange
从一个问题开始——xrange是迭代还是迭代器?
我们来看看
>>> x = xrange(10) >>> type(x) <type 'xrange'>
几个关键点:
1. `iter(xrange(num))`应该被支持
2. 如果`iter(xrange(num))`返回同样的对象(xrange类型)那xrange就是迭代器
3. 如果`iter(xrange(num))`返回一个迭代器对象那xrange就是迭代
>>> iter(xrange(10)) <rangeiterator object at 0x0264EFE0>
它返回了rangeiterator,所以我们完全可以叫它迭代器。
让我们用最少的xrange函数实现自己的xrange
xrange_iterator
class xrange_iter(object): def __init__(self, num): self.num = num self.start = 0 def __iter__(self): return self def next(self): if self.start < self.num: val = self.start self.start += 1 return val else: raise StopIteration()
my xrange
class my_xrange(object): def __init__(self, num): self.num = num def __iter__(self): return xrange_iter(self.num) >>> for x in my_xrange(10): print x, 0 1 2 3 4 5 6 7 8 9
以上就是本文的全部内容,希望对大家学习掌握Python迭代和迭代器有所帮助。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。
