Hive与Oracle表关联语句对比
在将ORACLE存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。本文详细对比了ORALCE和HIVE的各种表关联语法,包
在将Oracle存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。
本文详细对比了ORALCE和HIVE的各种表关联语法,,包括内关联,左,右关联,全外关联和笛卡尔积。
一.创建表
ORACLE:
create table a
(
a1 number(10),
a2 varchar2(50)
);
create table b
(
b1 number(10),
b2 varchar2(50)
);
HIVE:
CREATE TABLE IF NOT EXISTS a (
a1 STRING,
a2 STRING)
COMMENT 'TABLE A'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES ( 'created_at'='2014-04-28','creator'='HENRY' );
二.插入数据
ORACLE:
insert into a(a1,a2) values(1,'X');
insert into a(a1,a2) values(2,'Y');
insert into a(a1,a2) values(3,'Z');
insert into b(b1,b2) values(1,'X');
insert into b(b1,b2) values(2,'Y');
insert into b(b1,b2) values(4,'Z');
HIVE:
hive (default)> load data local inpath './data1' into table a;
Copying data from file:/home/Hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.a
Table default.a stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 1.961 seconds
hive (default)> load data local inpath './data1' into table b;
Copying data from file:/home/hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.b
Table default.b stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 0.392 seconds
其中data1数据文件内容为:
1|X
2|Y
3|Z
data2数据文件内容为:
1|X
2|Y
4|Z
三.等值关联
ORACLE:
select * from a,b where a.a1 = b.b1;
或:
select * from a join b on a.a1 = b.b1;
结果如下图所示:
HIVE:
select * from a join b on a.a1 = b.b1;
注意HIVE中不能使用where来表示关联条件。
执行过程及结果如下图所示:
hive (default)> select * from a join b on a.a1 = b.b1;
Total MapReduce jobs = 1
setting HADOOP_USER_NAME hadoop
Execution log at: /tmp/hadoop/.log
2014-04-29 09:13:27 Starting to launch local task to process map join; maximum memory = 1908932608
2014-04-29 09:13:27 Processing rows: 3 Hashtable size: 3 Memory usage: 110981704 rate: 0.058
2014-04-29 09:13:27 Dump the hashtable into file: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable
2014-04-29 09:13:27 Upload 1 File to: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable File size: 438
2014-04-29 09:13:27 End of local task; Time Taken: 0.339 sec.
Execution completed successfully
Mapred Local Task Succeeded . Convert the Join into MapJoin
Mapred Local Task Succeeded . Convert the Join into MapJoin
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201404251509_0131, Tracking URL = IP:50030/jobdetails.jsp?jobid=job_201404251509_0131
Kill Command = /home/hadoop/package/hadoop-1.0.4/libexec/../bin/hadoop job -kill job_201404251509_0131
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2014-04-29 09:13:39,979 Stage-3 map = 0%, reduce = 0%
2014-04-29 09:13:46,025 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:47,034 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:48,044 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:49,052 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:50,061 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:51,069 Stage-3 map = 100%, reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:52,077 Stage-3 map = 100%, reduce = 100%, Cumulative CPU 1.59 sec
MapReduce Total cumulative CPU time: 1 seconds 590 msec
Ended Job = job_201404251509_0131
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 1.59 sec HDFS Read: 211 HDFS Write: 16 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 590 msec
OK
a1 a2 b1 b2
1 X 1 X
2 Y 2 Y
更多详情见请继续阅读下一页的精彩内容:

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

聚集索引和非聚集索引的区别在于:1.聚集索引将数据行存储在索引结构中,适合按主键查询和范围查询。2.非聚集索引存储索引键值和数据行的指针,适用于非主键列查询。

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

MySQL 和 MariaDB 可以共存,但需要谨慎配置。关键在于为每个数据库分配不同的端口号和数据目录,并调整内存分配和缓存大小等参数。连接池、应用程序配置和版本差异也需要考虑,需要仔细测试和规划以避免陷阱。在资源有限的情况下,同时运行两个数据库可能会导致性能问题。

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

数据集成简化:AmazonRDSMySQL与Redshift的零ETL集成高效的数据集成是数据驱动型组织的核心。传统的ETL(提取、转换、加载)流程复杂且耗时,尤其是在将数据库(例如AmazonRDSMySQL)与数据仓库(例如Redshift)集成时。然而,AWS提供的零ETL集成方案彻底改变了这一现状,为从RDSMySQL到Redshift的数据迁移提供了简化、近乎实时的解决方案。本文将深入探讨RDSMySQL零ETL与Redshift集成,阐述其工作原理以及为数据工程师和开发者带来的优势。
