目录
概述
LRU 数据淘汰机制
TTL 数据淘汰机制
总结
首页 数据库 mysql教程 深入剖析 redis 数据淘汰策略

深入剖析 redis 数据淘汰策略

Jun 07, 2016 pm 04:34 PM
redis 剖析 数据 概述 淘汰 深入 策略

概述 在 redis 中,允许用户设置最大使用内存大小 server.maxmemory,在内存限定的情况下是很有用的。譬如,在一台 8G 机子上部署了 4 个 redis 服务点,每一个服务点分配 1.5G 的内存大小,减少内存紧张的情况,由此获取更为稳健的服务。 redis 内存数据集

概述

在 redis 中,允许用户设置最大使用内存大小 server.maxmemory,在内存限定的情况下是很有用的。譬如,在一台 8G 机子上部署了 4 个 redis 服务点,每一个服务点分配 1.5G 的内存大小,减少内存紧张的情况,由此获取更为稳健的服务。

redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:

  1. volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
  2. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  3. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  4. allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
  5. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  6. no-enviction(驱逐):禁止驱逐数据

redis 确定驱逐某个键值对后,会删除这个数据并,并将这个数据变更消息发布到本地(AOF 持久化)和从机(主从连接)。

LRU 数据淘汰机制

在服务器配置中保存了 lru 计数器 server.lrulock,会定时(redis 定时程序 serverCorn())更新,server.lrulock 的值是根据 server.unixtime 计算出来的。

另外,从 struct redisObject 中可以发现,每一个 redis 对象都会设置相应的 lru。可以想象的是,每一次访问数据的时候,会更新 redisObject.lru。

LRU 数据淘汰机制是这样的:在数据集中随机挑选几个键值对,取出其中 lru 最大的键值对淘汰。所以,你会发现,redis 并不是保证取得所有数据集中最近最少使用(LRU)的键值对,而只是随机挑选的几个键值对中的。

// redisServer 保存了 lru 计数器
struct redisServer {
    ...
    unsigned lruclock:22;       /* Clock incrementing every minute, for LRU */
    ...
};
// 每一个 redis 对象都保存了 lru
#define REDIS_LRU_CLOCK_MAX ((1<lru */
#define REDIS_LRU_CLOCK_RESOLUTION 10 /* LRU clock resolution in seconds */
typedef struct redisObject {
    // 刚刚好 32 bits
    // 对象的类型,字符串/列表/集合/哈希表
    unsigned type:4;
    // 未使用的两个位
    unsigned notused:2;     /* Not used */
    // 编码的方式,redis 为了节省空间,提供多种方式来保存一个数据
    // 譬如:“123456789” 会被存储为整数 123456789
    unsigned encoding:4;
    unsigned lru:22;        /* lru time (relative to server.lruclock) */
    // 引用数
    int refcount;
    // 数据指针
    void *ptr;
} robj;
// redis 定时执行程序。联想:linux cron
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
    ......
    /* We have just 22 bits per object for LRU information.
     * So we use an (eventually wrapping) LRU clock with 10 seconds resolution.
     * 2^22 bits with 10 seconds resolution is more or less 1.5 years.
     *
     * Note that even if this will wrap after 1.5 years it's not a problem,
     * everything will still work but just some object will appear younger
     * to Redis. But for this to happen a given object should never be touched
     * for 1.5 years.
     *
     * Note that you can change the resolution altering the
     * REDIS_LRU_CLOCK_RESOLUTION define.
     */
    updateLRUClock();
    ......
}
// 更新服务器的 lru 计数器
void updateLRUClock(void) {
    server.lruclock = (server.unixtime/REDIS_LRU_CLOCK_RESOLUTION) &
                                                REDIS_LRU_CLOCK_MAX;
}
登录后复制

TTL 数据淘汰机制

redis 数据集数据结构中保存了键值对过期时间的表,即 redisDb.expires。和 LRU 数据淘汰机制类似,TTL 数据淘汰机制是这样的:从过期时间的表中随机挑选几个键值对,取出其中 ttl 最大的键值对淘汰。同样你会发现,redis 并不是保证取得所有过期时间的表中最快过期的键值对,而只是随机挑选的几个键值对中的。

总结

redis 每服务客户端执行一个命令的时候,会检测使用的内存是否超额。如果超额,即进行数据淘汰。

// 执行命令
int processCommand(redisClient *c) {
    ......
    // 内存超额
    /* Handle the maxmemory directive.
     *
     * First we try to free some memory if possible (if there are volatile
     * keys in the dataset). If there are not the only thing we can do
     * is returning an error. */
    if (server.maxmemory) {
        int retval = freeMemoryIfNeeded();
        if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {
            flagTransaction(c);
            addReply(c, shared.oomerr);
            return REDIS_OK;
        }
    }
    ......
}
// 如果需要,是否一些内存
int freeMemoryIfNeeded(void) {
    size_t mem_used, mem_tofree, mem_freed;
    int slaves = listLength(server.slaves);
    // redis 从机回复空间和 AOF 内存大小不计算入 redis 内存大小
    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = zmalloc_used_memory();
    // 从机回复空间大小
    if (slaves) {
        listIter li;
        listNode *ln;
        listRewind(server.slaves,&li);
        while((ln = listNext(&li))) {
            redisClient *slave = listNodeValue(ln);
            unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
            if (obuf_bytes > mem_used)
                mem_used = 0;
            else
                mem_used -= obuf_bytes;
        }
    }
    // server.aof_buf && server.aof_rewrite_buf_blocks
    if (server.aof_state != REDIS_AOF_OFF) {
        mem_used -= sdslen(server.aof_buf);
        mem_used -= aofRewriteBufferSize();
    }
    // 内存是否超过设置大小
    /* Check if we are over the memory limit. */
    if (mem_used <= server.maxmemory) return REDIS_OK;
    // redis 中可以设置内存超额策略
    if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
        return REDIS_ERR; /* We need to free memory, but policy forbids. */
    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;
    while (mem_freed < mem_tofree) {
        int j, k, keys_freed = 0;
        // 遍历所有数据集
        for (j = 0; j < server.dbnum; j++) {
            long bestval = 0; /* just to prevent warning */
            sds bestkey = NULL;
            struct dictEntry *de;
            redisDb *db = server.db+j;
            dict *dict;
            // 不同的策略,选择的数据集不一样
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)
            {
                dict = server.db[j].dict;
            } else {
                dict = server.db[j].expires;
            }
            // 数据集为空,继续下一个数据集
            if (dictSize(dict) == 0) continue;
            // 随机淘汰随机策略:随机挑选
            /* volatile-random and allkeys-random policy */
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
            {
                de = dictGetRandomKey(dict);
                bestkey = dictGetKey(de);
            }
            // LRU 策略:挑选最近最少使用的数据
            /* volatile-lru and allkeys-lru policy */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
            {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最近最少使用的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    robj *o;
                    // 随机挑选键值对
                    de = dictGetRandomKey(dict);
                    // 获取键
                    thiskey = dictGetKey(de);
                    /* When policy is volatile-lru we need an additional lookup
                     * to locate the real key, as dict is set to db->expires. */
                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
                        de = dictFind(db->dict, thiskey);
                    o = dictGetVal(de);
                    // 计算数据的空闲时间
                    thisval = estimateObjectIdleTime(o);
                    // 当前键值空闲时间更长,则记录
                    /* Higher idle time is better candidate for deletion */
                    if (bestkey == NULL || thisval > bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }
            // TTL 策略:挑选将要过期的数据
            /* volatile-ttl */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最快要过期的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    de = dictGetRandomKey(dict);
                    thiskey = dictGetKey(de);
                    thisval = (long) dictGetVal(de);
                    /* Expire sooner (minor expire unix timestamp) is better
                     * candidate for deletion */
                    if (bestkey == NULL || thisval < bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }
            // 删除选定的键值对
            /* Finally remove the selected key. */
            if (bestkey) {
                long long delta;
                robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
                // 发布数据更新消息,主要是 AOF 持久化和从机
                propagateExpire(db,keyobj);
                // 注意, propagateExpire() 可能会导致内存的分配, propagateExpire() 提前执行就是因为 redis 只计算 dbDelete() 释放的内存大小。倘若同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小,与此同时假设分配空间大于释放空间,就有可能永远退不出这个循环。
                // 下面的代码会同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小:
                // propagateExpire(db,keyobj);
                // delta = (long long) zmalloc_used_memory();
                // dbDelete(db,keyobj);
                // delta -= (long long) zmalloc_used_memory();
                // mem_freed += delta;
                /////////////////////////////////////////
                /* We compute the amount of memory freed by dbDelete() alone.
                 * It is possible that actually the memory needed to propagate
                 * the DEL in AOF and replication link is greater than the one
                 * we are freeing removing the key, but we can't account for
                 * that otherwise we would never exit the loop.
                 *
                 * AOF and Output buffer memory will be freed eventually so
                 * we only care about memory used by the key space. */
                // 只计算 dbDelete() 释放内存的大小
                delta = (long long) zmalloc_used_memory();
                dbDelete(db,keyobj);
                delta -= (long long) zmalloc_used_memory();
                mem_freed += delta;
                server.stat_evictedkeys++;
                // 将数据的删除通知所有的订阅客户端
                notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted",
                    keyobj, db->id);
                decrRefCount(keyobj);
                keys_freed++;
                // 将从机回复空间中的数据及时发送给从机
                /* When the memory to free starts to be big enough, we may
                 * start spending so much time here that is impossible to
                 * deliver data to the slaves fast enough, so we force the
                 * transmission here inside the loop. */
                if (slaves) flushSlavesOutputBuffers();
            }
        }
        // 未能释放空间,且此时 redis 使用的内存大小依旧超额,失败返回
        if (!keys_freed) return REDIS_ERR; /* nothing to free... */
    }
    return REDIS_OK;
}
登录后复制

捣乱 2014-5-27

http://daoluan.net

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1666
14
CakePHP 教程
1425
52
Laravel 教程
1327
25
PHP教程
1273
29
C# 教程
1252
24
redis集群模式怎么搭建 redis集群模式怎么搭建 Apr 10, 2025 pm 10:15 PM

Redis集群模式通过分片将Redis实例部署到多个服务器,提高可扩展性和可用性。搭建步骤如下:创建奇数个Redis实例,端口不同;创建3个sentinel实例,监控Redis实例并进行故障转移;配置sentinel配置文件,添加监控Redis实例信息和故障转移设置;配置Redis实例配置文件,启用集群模式并指定集群信息文件路径;创建nodes.conf文件,包含各Redis实例的信息;启动集群,执行create命令创建集群并指定副本数量;登录集群执行CLUSTER INFO命令验证集群状态;使

redis数据怎么清空 redis数据怎么清空 Apr 10, 2025 pm 10:06 PM

如何清空 Redis 数据:使用 FLUSHALL 命令清除所有键值。使用 FLUSHDB 命令清除当前选定数据库的键值。使用 SELECT 切换数据库,再使用 FLUSHDB 清除多个数据库。使用 DEL 命令删除特定键。使用 redis-cli 工具清空数据。

redis怎么读取队列 redis怎么读取队列 Apr 10, 2025 pm 10:12 PM

要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。

centos redis如何配置Lua脚本执行时间 centos redis如何配置Lua脚本执行时间 Apr 14, 2025 pm 02:12 PM

在CentOS系统上,您可以通过修改Redis配置文件或使用Redis命令来限制Lua脚本的执行时间,从而防止恶意脚本占用过多资源。方法一:修改Redis配置文件定位Redis配置文件:Redis配置文件通常位于/etc/redis/redis.conf。编辑配置文件:使用文本编辑器(例如vi或nano)打开配置文件:sudovi/etc/redis/redis.conf设置Lua脚本执行时间限制:在配置文件中添加或修改以下行,设置Lua脚本的最大执行时间(单位:毫秒)

redis命令行怎么用 redis命令行怎么用 Apr 10, 2025 pm 10:18 PM

使用 Redis 命令行工具 (redis-cli) 可通过以下步骤管理和操作 Redis:连接到服务器,指定地址和端口。使用命令名称和参数向服务器发送命令。使用 HELP 命令查看特定命令的帮助信息。使用 QUIT 命令退出命令行工具。

redis计数器怎么实现 redis计数器怎么实现 Apr 10, 2025 pm 10:21 PM

Redis计数器是一种使用Redis键值对存储来实现计数操作的机制,包含以下步骤:创建计数器键、增加计数、减少计数、重置计数和获取计数。Redis计数器的优势包括速度快、高并发、持久性和简单易用。它可用于用户访问计数、实时指标跟踪、游戏分数和排名以及订单处理计数等场景。

redis过期策略怎么设置 redis过期策略怎么设置 Apr 10, 2025 pm 10:03 PM

Redis数据过期策略有两种:定期删除:定期扫描删除过期键,可通过 expired-time-cap-remove-count、expired-time-cap-remove-delay 参数设置。惰性删除:仅在读取或写入键时检查删除过期键,可通过 lazyfree-lazy-eviction、lazyfree-lazy-expire、lazyfree-lazy-user-del 参数设置。

如何优化debian readdir的性能 如何优化debian readdir的性能 Apr 13, 2025 am 08:48 AM

在Debian系统中,readdir系统调用用于读取目录内容。如果其性能表现不佳,可尝试以下优化策略:精简目录文件数量:尽可能将大型目录拆分成多个小型目录,降低每次readdir调用处理的项目数量。启用目录内容缓存:构建缓存机制,定期或在目录内容变更时更新缓存,减少对readdir的频繁调用。内存缓存(如Memcached或Redis)或本地缓存(如文件或数据库)均可考虑。采用高效数据结构:如果自行实现目录遍历,选择更高效的数据结构(例如哈希表而非线性搜索)存储和访问目录信

See all articles