Hadoop HelloWord Examples- 求平均数
? 另外一个hadoop的入门demo,求平均数。是对WordCount这个demo的一个小小的修改。输入一堆成绩单(人名,成绩),然后求每个人成绩平均数,比如: //? subject1.txt ? a 90 ? b 80 ? c 70 ?// subject2.txt ? a 100 ? b 90 ? c 80 ? 求a,b,c这三个人的平均
? 另外一个hadoop的入门demo,求平均数。是对WordCount这个demo的一个小小的修改。输入一堆成绩单(人名,成绩),然后求每个人成绩平均数,比如:
//? subject1.txt
? a 90
? b 80
? c 70
?// subject2.txt
? a 100
? b 90
? c 80
? 求a,b,c这三个人的平均分。解决思路很简单,在map阶段key是名字,value是成绩,直接output。reduce阶段得到了map输出的key名字,values是该名字对应的一系列的成绩,那么对其求平均数即可。
? 这里我们实现了两个版本的代码,分别用TextInputFormat和 KeyValueTextInputFormat来作为输入格式。
? TextInputFormat版本:
?
import java.util.*; import java.io.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class AveScore { public static class AveMapper extends Mapper { @Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] strs = line.split(" "); String name = strs[0]; int score = Integer.parseInt(strs[1]); context.write(new Text(name), new IntWritable(score)); } } public static class AveReducer extends Reducer { @Override public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { int sum = 0; int count = 0; for(IntWritable val : values) { sum += val.get(); count++; } int aveScore = sum / count; context.write(key, new IntWritable(aveScore)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf,"AverageScore"); job.setJarByClass(AveScore.class); job.setMapperClass(AveMapper.class); job.setReducerClass(AveReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit( job.waitForCompletion(true) ? 0 : 1); } }
KeyValueTextInputFormat版本;
import java.util.*; import java.io.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class AveScore_KeyValue { public static class AveMapper extends Mapper { @Override public void map(Text key, Text value, Context context) throws IOException, InterruptedException { int score = Integer.parseInt(value.toString()); context.write(key, new IntWritable(score) ); } } public static class AveReducer extends Reducer { @Override public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { int sum = 0; int count = 0; for(IntWritable val : values) { sum += val.get(); count++; } int aveScore = sum / count; context.write(key, new IntWritable(aveScore)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " "); Job job = new Job(conf,"AverageScore"); job.setJarByClass(AveScore_KeyValue.class); job.setMapperClass(AveMapper.class); job.setReducerClass(AveReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setInputFormatClass(KeyValueTextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class) ; FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit( job.waitForCompletion(true) ? 0 : 1); } }
输出结果为:
? a 95
? b 85
? c 75
?
作者:qiul12345 发表于2013-8-23 21:51:03 原文链接
阅读:113 评论:0 查看评论
原文地址:Hadoop HelloWord Examples- 求平均数, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Java错误:Hadoop错误,如何处理和避免当使用Hadoop处理大数据时,常常会遇到一些Java异常错误,这些错误可能会影响任务的执行,导致数据处理失败。本文将介绍一些常见的Hadoop错误,并提供处理和避免这些错误的方法。Java.lang.OutOfMemoryErrorOutOfMemoryError是Java虚拟机内存不足的错误。当Hadoop任

随着数据量的不断增大,传统的数据处理方式已经无法处理大数据时代带来的挑战。Hadoop是开源的分布式计算框架,它通过分布式存储和处理大量的数据,解决了单节点服务器在大数据处理中带来的性能瓶颈问题。PHP是一种脚本语言,广泛应用于Web开发,而且具有快速开发、易于维护等优点。本文将介绍如何使用PHP和Hadoop进行大数据处理。什么是HadoopHadoop是

随着大数据时代的到来,数据处理和存储变得越来越重要,如何高效地管理和分析大量的数据也成为企业面临的挑战。Hadoop和HBase作为Apache基金会的两个项目,为大数据存储和分析提供了一种解决方案。本文将介绍如何在Beego中使用Hadoop和HBase进行大数据存储和查询。一、Hadoop和HBase简介Hadoop是一个开源的分布式存储和计算系统,它可

Java大数据技术栈:了解Java在大数据领域的应用,如Hadoop、Spark、Kafka等随着数据量不断增加,大数据技术成为了当今互联网时代的热门话题。在大数据领域,我们常常听到Hadoop、Spark、Kafka等技术的名字。这些技术起到了至关重要的作用,而Java作为一门广泛应用的编程语言,也在大数据领域发挥着巨大的作用。本文将重点介绍Java在大

一:安装JDK1.执行以下命令,下载JDK1.8安装包。wget--no-check-certificatehttps://repo.huaweicloud.com/java/jdk/8u151-b12/jdk-8u151-linux-x64.tar.gz2.执行以下命令,解压下载的JDK1.8安装包。tar-zxvfjdk-8u151-linux-x64.tar.gz3.移动并重命名JDK包。mvjdk1.8.0_151//usr/java84.配置Java环境变量。echo'

电脑已经成为现代工作的标准配置,所以办公软件也是工作中需要掌握的一项基本操作,随着科技的发展,办公软件的功能也日渐强大。Excel由于功能强大在实际工作中经常被使用,excel作为数据展示清晰直观,作为计算软件方便准确,excel可以进行求和、汇总、算平均数。今天我们就教大家excel去掉一个最高分和最低分求平均数的方法。打开表格后,发现该表中最高分为100分,最低分为66分。因此,我们需要计算除这两个分数外的其他分数的平均值。2.点击函数图标(如下图所示)。3.用TRIMMEAN函数。4.这个

在当前的互联网时代,海量数据的处理是各个企业和机构都需要面对的问题。作为一种广泛应用的编程语言,PHP同样需要在数据处理方面跟上时代的步伐。为了更加高效地处理海量数据,PHP开发引入了一些大数据处理工具,如Spark和Hadoop等。Spark是一款开源的数据处理引擎,可以用于大型数据集的分布式处理。Spark的最大特点是具有快速的数据处理速度和高效的数据存

随着数据量的不断增加,大规模数据处理已经成为了企业必须面对和解决的问题。传统的关系型数据库已经无法满足这种需求,而对于大规模数据的存储和分析,Hadoop、Spark、Flink等分布式计算平台成为了最佳选择。在数据处理工具的选择过程中,PHP作为一种易于开发和维护的语言,越来越受到开发者的欢迎。在本文中,我们将探讨如何利用PHP来实现大规模数据处理,以及如
