MongoDB Connector for Hadoop
by Mike O’Brien, MongoDB Kernel Tools Lead and maintainer of Mongo-Hadoop, the Hadoop Adapter for MongoDB Hadoop is a powerful, JVM-based platform for running Map/Reduce jobs on clusters of many machines, and it excels at doing analytics
by Mike O’Brien, MongoDB Kernel Tools Lead and maintainer of Mongo-Hadoop, the Hadoop Adapter for MongoDB
Hadoop is a powerful, JVM-based platform for running Map/Reduce jobs on clusters of many machines, and it excels at doing analytics and processing tasks on very large data sets.
Since MongoDB excels at storing large operational data sets for applications, it makes sense to explore using these together - MongoDB for storage and querying, and Hadoop for batch processing.
The MongoDB Connector for Hadoop
We recently released the 1.1 release of the MongoDB Connector for Hadoop. The MongoDB Connector for Hadoop makes it easy to use Mongo databases, or MongoDB backup files in .bson format, as the input source or output destination for Hadoop Map/Reduce jobs. By inspecting the data and computing input splits, Hadoop can process the data in parallel so that very large datasets can be processed quickly.
The MongoDB Connector for Hadoop also includes support for Pig and Hive, which allow very sophisticated MapReduce workflows to be executed just by writing very simple scripts.
- Pig is a high-level scripting language for data analysis and building map/reduce workflows
- Hive is a SQL-like language for ad-hoc queries and analysis of data sets on Hadoop-compatible file systems.
Hadoop streaming is also supported, so map/reduce functions can be written in any language besides Java. Right now the MongoDB Connector for Hadoop supports streaming in Ruby, Node.js and Python.
How it Works
How the Hadoop connector works
- The adapter examines the MongoDB Collection and calculates a set of splits from the data
- Each of the splits gets assigned to a node in Hadoop cluster
- In parallel, Hadoop nodes pull data for their splits from MongoDB (or BSON) and process them locally
- Hadoop merges results and streams output back to MongoDB or BSON
I’ll be giving an hour-long webinar on What’s New with the Mongo-Hadoop integration. The webinar will cover
- Using Java MapReduce with the MongoDB Connector for Hadoop
- Using Hadoop Streaming for other non-JVM languages
- Writing Pig Scripts with the MongoDB Connector for Hadoop
-
MongoDB and Hadoop usage with Elastic MapReduce to easily kick off your Hadoop jobs
-
Overview of MongoUpdateWriteable: Using the result output from Hadoop to modify an existing output collection
The webinar will be offered twice on August 8:
- 8 am PDT / 11 am EDT / 3pm UTC
- 11am PDT / 2pm EDT / 6pm UTC
Register for the Webinar on August 8
Update: Watch the webinar recording
原文地址:MongoDB Connector for Hadoop, 感谢原作者分享。

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

在开发一个电商网站时,我遇到了一个棘手的问题:如何为用户提供个性化的商品推荐。最初,我尝试了一些简单的推荐算法,但效果并不理想,用户的满意度也因此受到影响。为了提升推荐系统的精度和效率,我决定采用更专业的解决方案。最终,我通过Composer安装了andres-montanez/recommendations-bundle,这不仅解决了我的问题,还大大提升了推荐系统的性能。可以通过一下地址学习composer:学习地址

直接通过 Navicat 查看 MongoDB 密码是不可能的,因为它以哈希值形式存储。取回丢失密码的方法:1. 重置密码;2. 检查配置文件(可能包含哈希值);3. 检查代码(可能硬编码密码)。

CentOS系统上GitLab数据库部署指南选择合适的数据库是成功部署GitLab的关键步骤。GitLab兼容多种数据库,包括MySQL、PostgreSQL和MongoDB。本文将详细介绍如何选择并配置这些数据库。数据库选择建议MySQL:一款广泛应用的关系型数据库管理系统(RDBMS),性能稳定,适用于大多数GitLab部署场景。PostgreSQL:功能强大的开源RDBMS,支持复杂查询和高级特性,适合处理大型数据集。MongoDB:流行的NoSQL数据库,擅长处理海

CentOS系统下MongoDB高效备份策略详解本文将详细介绍在CentOS系统上实施MongoDB备份的多种策略,以确保数据安全和业务连续性。我们将涵盖手动备份、定时备份、自动化脚本备份以及Docker容器环境下的备份方法,并提供备份文件管理的最佳实践。手动备份:利用mongodump命令进行手动全量备份,例如:mongodump-hlocalhost:27017-u用户名-p密码-d数据库名称-o/备份目录此命令会将指定数据库的数据及元数据导出到指定的备份目录。

MongoDB与关系型数据库:深度对比本文将深入探讨NoSQL数据库MongoDB与传统关系型数据库(如MySQL和SQLServer)的差异。关系型数据库采用行和列的表格结构组织数据,而MongoDB则使用灵活的面向文档模型,更适应现代应用的需求。主要区别数据结构:关系型数据库使用预定义模式的表格存储数据,表间关系通过主键和外键建立;MongoDB使用类似JSON的BSON文档存储在集合中,每个文档结构可独立变化,实现无模式设计。架构设计:关系型数据库需要预先定义固定的模式;MongoDB支持

要设置 MongoDB 用户,请按照以下步骤操作:1. 连接到服务器并创建管理员用户。2. 创建要授予用户访问权限的数据库。3. 使用 createUser 命令创建用户并指定其角色和数据库访问权限。4. 使用 getUsers 命令检查创建的用户。5. 可选地设置其他权限或授予用户对特定集合的权限。

在Debian系统上为MongoDB数据库加密,需要遵循以下步骤:第一步:安装MongoDB首先,确保您的Debian系统已安装MongoDB。如果没有,请参考MongoDB官方文档进行安装:https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/第二步:生成加密密钥文件创建一个包含加密密钥的文件,并设置正确的权限:ddif=/dev/urandomof=/etc/mongodb-keyfilebs=512

MongoDB适合非结构化数据和高扩展性需求,Oracle适合需要严格数据一致性的场景。1.MongoDB灵活存储不同结构数据,适合社交媒体和物联网。2.Oracle结构化数据模型确保数据完整性,适用于金融交易。3.MongoDB通过分片横向扩展,Oracle通过RAC纵向扩展。4.MongoDB维护成本低,Oracle维护成本高但支持完善。
