目录
5台服务器设计图
--  配置Linux、安装JDK
-- Step 1. 建立用户hadoop的ssh无密码登陆
-- Step 3. Hadoop集群配置:
-- Step 3.1 vi $HADOOP_HOME/etc/hadoop/slaves
-- Step 3.2 vi $HADOOP_HOME/etc/hadoop/hadoop-env.sh  (添加 JAVA_HOME 环境变量、本地library库)
-- Step 3.3 vi $HADOOP_HOME/etc/hadoop/core-site.xml
-- Step 3.4 vi $HADOOP_HOME/etc/hadoop/hdfs-site.xml
-- Step 3.5 vi $HADOOP_HOME/etc/hadoop/mapred-site.xml
-- Step 3.6 vi $HADOOP_HOME/etc/hadoop/yarn-site.xml
-- Step 3.7 vi $HADOOP_HOME/etc/hadoop/fairscheduler.xml
-- Step 4. 创建相关目录
-- Step 5. 启动Zookeeper、JournalNode、格式化Hadoop集群并启动
-- Step 5.1 启动Zooker (ZK集群是funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198 五台服务器)
-- Step 5.2 启动JournalNode进程(在funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198五台服务器上分别执行):
-- Step 5.3 格式化Hadoop集群并启动:
-- Step 6. 上传测试数据:
-- Step 7. Hive安装(安装到196机器) (使用Hive与HBase整合安装;使用源码编译安装)
-- Step 7.1 My SQL安装(安装到194机器),并在My SQL中创建名为hive的数据库用以存放hive元数据:
-- Step 7.2 解决hive安装包到/usr/local下,添加hive相关环境变量:
-- Step 7.3 在My SQL数据库的hive数据库中执行创建hive元数据脚本:
-- Step 7.4 修改hive相关配置文件:
-- 7.4.1 修改 $HIVE_HOME/bin/hive-config.sh 文件,添加如下环境变量:
-- 7.4.2 修改 $HIVE_HOME/conf/hive-site.xml 的第2002行:
-- 7.4.3 修改 $HIVE_HOME/conf/hive-site.xml 的如下property:
-- Step 7.5 启动并登录hive,并创建hive表
首页 数据库 mysql教程 hadoop2.4.0 ha 搭建

hadoop2.4.0 ha 搭建

Jun 07, 2016 pm 03:43 PM
hadoop 搭建 通过 问题

问题导读: 1、hadoop ha是通过什么配置实现自动切换的? 2、配置中mapred与mapreduce的区别是什么? 3、hadoop ha两个namenode之间的关系是什么? -- hadoop 版本:2.4.0 -- 安装包名: hadoop-2.4.0.tar.gz 或者源码版本 hadoop-2.4.0-src.tar.gz(我hadoop

问题导读:
1、hadoop ha是通过什么配置实现自动切换的?
2、配置中mapred与mapreduce的区别是什么?
3、hadoop ha两个namenode之间的关系是什么?

-- hadoop 版本:2.4.0
-- 安装包名: 
             hadoop-2.4.0.tar.gz 或者源码版本 hadoop-2.4.0-src.tar.gz(我hadoop、hbase、hive均是用的源码编译安装)

-- 安装参考:
http://www.netfoucs.com/article/book_mmicky/79985.html
http://www.byywee.com/page/M0/S934/934356.html
http://www.itpub.net/thread-1631536-1-1.html
http://demo.netfoucs.com/u014393917/article/details/25913363
http://www.aboutyun.com/thread-8294-1-1.html

-- 找不到本地库
           参考:http://www.ercoppa.org/Linux-Com ... -hadoop-library.htm

-- lzo支持,
参考:http://blog.csdn.net/zhangzhaokun/article/details/17595325
http://slaytanic.blog.51cto.com/2057708/1162287/
http://hi.baidu.com/qingchunranzhi/item/3662ed5ed29d37a1adc85709


-- 安装以下RPM包:
yum -y install openssh*
yum -y install man*
yum -y install compat-libstdc++-33*
yum -y install libaio-0.*
yum -y install libaio-devel*
yum -y install sysstat-9.*
yum -y install glibc-2.*
yum -y install glibc-devel-2.* glibc-headers-2.*
yum -y install ksh-2*
yum -y install libgcc-4.*
yum -y install libstdc++-4.*
yum -y install libstdc++-4.*.i686*
yum -y install libstdc++-devel-4.*
yum -y install gcc-4.*x86_64*
yum -y install gcc-c++-4.*x86_64*
yum -y install elfutils-libelf-0*x86_64* elfutils-libelf-devel-0*x86_64*
yum -y install elfutils-libelf-0*i686* elfutils-libelf-devel-0*i686*
yum -y install libtool-ltdl*i686*
yum -y install ncurses*i686*
yum -y install ncurses*
yum -y install readline*
yum -y install unixODBC*
yum -y install zlib
yum -y install zlib*
yum -y install openssl*
yum -y install patch
yum -y install git
yum -y -y install  lzo-devel zlib-devel gcc autoconf automake libtool
yum -y install lzop
yum -y install lrzsz
yum -y -y install  lzo-devel  zlib-devel  gcc autoconf automake libtool
yum -y install nc
yum -y install glibc
yum -y install java-1.7.0-openjdk
yum -y install gzip
yum -y install zlib
yum -y install gcc
yum -y install gcc-c++
yum -y install make
yum -y install protobuf
yum -y install protoc
yum -y install cmake
yum -y install openssl-devel
yum -y install ncurses-devel
yum -y install unzip
yum -y install telnet
yum -y install telnet-server
yum -y install wget
yum -y install svn
yum -y install ntpdate

-- hive 安装,参考:http://kicklinux.com/hive-deploy/

5台服务器设计图

IP地址 主机名 NameNode JournalNode DataNode Zookeeper Hbase Hive
192.168.117.194 funshion-hadoop194
192.168.117.195 funshion-hadoop195
192.168.117.196 funshion-hadoop196 是(Master) 是(Mysql)
192.168.117.197 funshion-hadoop197
192.168.117.198 funshion-hadoop198


--  配置Linux、安装JDK

--参考:linux(ubuntu)安装Java jdk环境变量设置及小程序测试

-- Step 1. 建立用户hadoop的ssh无密码登陆

--参考:
linux(ubuntu)无密码互通、相互登录高可靠文档
CentOS6.4之图解SSH无验证双向登陆配置

-- Step 2. zookeeper配置(配置奇数台zk集群,我用的5台)
-- 参考:Zookeeper集群环境安装过程详解

-- Step 3. Hadoop集群配置:


-- Step 3.1 vi $HADOOP_HOME/etc/hadoop/slaves

funshion-hadoop196
funshion-hadoop197
funshion-hadoop198

-- Step 3.2 vi $HADOOP_HOME/etc/hadoop/hadoop-env.sh  (添加 JAVA_HOME 环境变量、本地library库)

export JAVA_HOME=/usr/java/latest
export LD_LIBRARY_PATH=/usr/local/hadoop/lzo/lib
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_PREFIX}/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_PREFIX/lib/native"

-- 注意:${HADOOP_PREFIX}/lib/native 下的内容如下:
[hadoop@funshion-hadoop194 native]$ pwd
/usr/local/hadoop/lib/native

[hadoop@funshion-hadoop194 native]$ ls -l
total 8640
-rw-r--r--. 1 hadoop hadoop 2850660 Jun  9 14:58 hadoop-common-2.4.0.jar
-rw-r--r--. 1 hadoop hadoop 1509888 Jun  9 14:58 hadoop-common-2.4.0-tests.jar
-rw-r--r--. 1 hadoop hadoop  178637 Jun  9 14:58 hadoop-lzo-0.4.20-SNAPSHOT.jar
-rw-r--r--. 1 hadoop hadoop  145385 Jun  9 14:58 hadoop-nfs-2.4.0.jar
-rw-r--r--. 1 hadoop hadoop  983042 Jun  6 19:36 libhadoop.a
-rw-r--r--. 1 hadoop hadoop 1487284 Jun  6 19:36 libhadooppipes.a
lrwxrwxrwx. 1 hadoop hadoop      18 Jun  6 19:42 libhadoop.so -> libhadoop.so.1.0.0
-rwxr-xr-x. 1 hadoop hadoop  586664 Jun  6 19:36 libhadoop.so.1.0.0
-rw-r--r--. 1 hadoop hadoop  582040 Jun  6 19:36 libhadooputils.a
-rw-r--r--. 1 hadoop hadoop  298178 Jun  6 19:36 libhdfs.a
lrwxrwxrwx. 1 hadoop hadoop      16 Jun  6 19:42 libhdfs.so -> libhdfs.so.0.0.0
-rwxr-xr-x. 1 hadoop hadoop  200026 Jun  6 19:36 libhdfs.so.0.0.0
drwxrwxr-x. 2 hadoop hadoop    4096 Jun  6 20:37 Linux-amd64-64

-- Step 3.3 vi $HADOOP_HOME/etc/hadoop/core-site.xml

--(注意:fs.default.FS参数在两个namenode节点均一样,即5台机器的core-site.xml文件内容完全一样)



fs.defaultFS
hdfs://mycluster


dfs.ha.fencing.methods
sshfence


dfs.ha.fencing.ssh.private-key-files
/home/hadoop/.ssh/id_rsa_nn2


ha.zookeeper.quorum
funshion-hadoop194:2181,funshion-hadoop195:2181,funshion-hadoop196:2181,funshion-hadoop197:2181,funshion-hadoop198:2181




io.compression.codecs
org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,com.hadoop.compression.lzo.LzoCodec,com.hadoop.compression.lzo.LzopCodec,org.apache.hadoop.io.compress.BZip2Codec


io.compression.codec.lzo.class
com.hadoop.compression.lzo.LzoCodec


io.file.buffer.size
131072


hadoop.tmp.dir
/home/hadoop/tmp
Abase for other temporary directories.


hadoop.proxyuser.hadoop.hosts
*


hadoop.proxyuser.hadoop.groups
*


hadoop.native.lib
true


ha.zookeeper.session-timeout.ms
60000
ms


ha.failover-controller.cli-check.rpc-timeout.ms
60000


ipc.client.connect.timeout
20000




-- 注意:属性值dfs.ha.fencing.ssh.private-key-files的值id_rsa_nn2 是privatekey(即/home/hadoop/.ssh/目录id_rsa文件的拷贝,且权限为600)
       
                dfs.ha.fencing.ssh.private-key-files
                /home/hadoop/.ssh/id_rsa_nn2
       


-- Step 3.4 vi $HADOOP_HOME/etc/hadoop/hdfs-site.xml




dfs.nameservices
mycluster


dfs.ha.namenodes.mycluster
nn1,nn2


dfs.namenode.rpc-address.mycluster.nn1
funshion-hadoop194:8020


dfs.namenode.rpc-address.mycluster.nn2
funshion-hadoop195:8020


dfs.namenode.servicerpc-address.mycluster.nn1
funshion-hadoop194:53310

:q
dfs.namenode.servicerpc-address.mycluster.nn2
funshion-hadoop195:53310


dfs.namenode.http-address.mycluster.nn1
funshion-hadoop194:50070


dfs.namenode.http-address.mycluster.nn2
funshion-hadoop195:50070


dfs.namenode.shared.edits.dir
qjournal://funshion-hadoop194:8485;funshion-hadoop195:8485;funshion-hadoop196:8485;funshion-hadoop197:8485;funshion-hadoop198:8485/mycluster


dfs.journalnode.edits.dir
/home/hadoop/mydata/journal


dfs.client.failover.proxy.provider.mycluster
org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider


dfs.ha.automatic-failover.enabled
true




dfs.namenode.name.dir
file:///home/hadoop/mydata/name


dfs.datanode.data.dir
file:///home/hadoop/mydata/data


dfs.replication
2


dfs.image.transfer.bandwidthPerSec
1048576



-- Step 3.5 vi $HADOOP_HOME/etc/hadoop/mapred-site.xml



mapreduce.jobhistory.address
funshion-hadoop194:10020


mapreduce.jobhistory.webapp.address
funshion-hadoop194:19888


mapreduce.map.output.compress
true


mapreduce.map.output.compress.codec
com.hadoop.compression.lzo.LzoCodec


mapred.child.env
LD_LIBRARY_PATH=/usr/local/hadoop/lib/native


mapred.child.java.opts
-Xmx2048m


mapred.reduce.child.java.opts
-Xmx2048m


mapred.map.child.java.opts
-Xmx2048m


mapred.remote.os
Linux
Remote MapReduce framework's OS, can be either Linux or Windows




-- 注意:1、以mapred.开头的形式去指定属性名,都是一种过时的形式,建议使用mapreduce.
            比如:mapred.compress.map.output 属性应该对应修改成:mapreduce.map.output.compress
            具体可以查阅:http://hadoop.apache.org/docs/r2 ... /mapred-default.xml 文件,
      当然,好像还有少量属性名是没有修改的,比如:mapred.child.java.opts、mapred.child.env

-- 注意:/usr/local/hadoop/lib/native 目录下有如下内容:
[hadoop@funshion-hadoop194 sbin]$ ls -l /usr/local/hadoop/lib/native
total 12732
-rw-r--r-- 1 hadoop hadoop 2850900 Jun 20 19:22 hadoop-common-2.4.0.jar
-rw-r--r-- 1 hadoop hadoop 1509411 Jun 20 19:22 hadoop-common-2.4.0-tests.jar
-rw-r--r-- 1 hadoop hadoop  178559 Jun 20 18:38 hadoop-lzo-0.4.20-SNAPSHOT.jar
-rw-r--r-- 1 hadoop hadoop 1407039 Jun 20 19:25 hadoop-yarn-common-2.4.0.jar
-rw-r--r-- 1 hadoop hadoop  106198 Jun 20 18:37 libgplcompression.a
-rw-r--r-- 1 hadoop hadoop    1124 Jun 20 18:37 libgplcompression.la
-rwxr-xr-x 1 hadoop hadoop   69347 Jun 20 18:37 libgplcompression.so
-rwxr-xr-x 1 hadoop hadoop   69347 Jun 20 18:37 libgplcompression.so.0
-rwxr-xr-x 1 hadoop hadoop   69347 Jun 20 18:37 libgplcompression.so.0.0.0
-rw-r--r-- 1 hadoop hadoop  983042 Jun 20 18:10 libhadoop.a
-rw-r--r-- 1 hadoop hadoop 1487284 Jun 20 18:10 libhadooppipes.a
lrwxrwxrwx 1 hadoop hadoop      18 Jun 20 18:27 libhadoop.so -> libhadoop.so.1.0.0
-rwxr-xr-x 1 hadoop hadoop  586664 Jun 20 18:10 libhadoop.so.1.0.0
-rw-r--r-- 1 hadoop hadoop  582040 Jun 20 18:10 libhadooputils.a
-rw-r--r-- 1 hadoop hadoop  298178 Jun 20 18:10 libhdfs.a
lrwxrwxrwx 1 hadoop hadoop      16 Jun 20 18:27 libhdfs.so -> libhdfs.so.0.0.0
-rwxr-xr-x 1 hadoop hadoop  200026 Jun 20 18:10 libhdfs.so.0.0.0
-rw-r--r-- 1 hadoop hadoop  906318 Jun 20 19:17 liblzo2.a
-rwxr-xr-x 1 hadoop hadoop     929 Jun 20 19:17 liblzo2.la
-rwxr-xr-x 1 hadoop hadoop  562376 Jun 20 19:17 liblzo2.so
-rwxr-xr-x 1 hadoop hadoop  562376 Jun 20 19:17 liblzo2.so.2
-rwxr-xr-x 1 hadoop hadoop  562376 Jun 20 19:17 liblzo2.so.2.0.0

-- Step 3.6 vi $HADOOP_HOME/etc/hadoop/yarn-site.xml




yarn.resourcemanager.connect.retry-interval.ms
60000


yarn.resourcemanager.ha.enabled
true


yarn.resourcemanager.cluster-id
rm-cluster


yarn.resourcemanager.ha.rm-ids
rm1,rm2


yarn.resourcemanager.ha.id
rm1


yarn.resourcemanager.hostname.rm1
funshion-hadoop194


yarn.resourcemanager.hostname.rm2
funshion-hadoop195


yarn.resourcemanager.recovery.enabled
true


yarn.resourcemanager.store.class
org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore


yarn.resourcemanager.zk-address
funshion-hadoop194:2181,funshion-hadoop195:2181,funshion-hadoop196:2181,funshion-hadoop197:2181,funshion-hadoop198:2181


yarn.resourcemanager.address.rm1
${yarn.resourcemanager.hostname.rm1}:23140


yarn.resourcemanager.scheduler.address.rm1
${yarn.resourcemanager.hostname.rm1}:23130


yarn.resourcemanager.webapp.https.address.rm1
${yarn.resourcemanager.hostname.rm1}:23189


yarn.resourcemanager.webapp.address.rm1
${yarn.resourcemanager.hostname.rm1}:23188


yarn.resourcemanager.resource-tracker.address.rm1
${yarn.resourcemanager.hostname.rm1}:23125


yarn.resourcemanager.admin.address.rm1
${yarn.resourcemanager.hostname.rm1}:23141




yarn.resourcemanager.address.rm2
${yarn.resourcemanager.hostname.rm2}:23140


yarn.resourcemanager.scheduler.address.rm2
${yarn.resourcemanager.hostname.rm2}:23130


yarn.resourcemanager.webapp.https.address.rm2
${yarn.resourcemanager.hostname.rm2}:23189


yarn.resourcemanager.webapp.address.rm2
${yarn.resourcemanager.hostname.rm2}:23188


yarn.resourcemanager.resource-tracker.address.rm2
${yarn.resourcemanager.hostname.rm2}:23125


yarn.resourcemanager.admin.address.rm2
${yarn.resourcemanager.hostname.rm2}:23141




yarn.resourcemanager.scheduler.class
org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler


yarn.scheduler.fair.allocation.file
${yarn.home.dir}/etc/hadoop/fairscheduler.xml


yarn.nodemanager.local-dirs
/home/hadoop/logs/yarn_local


yarn.nodemanager.log-dirs
/home/hadoop/logs/yarn_log


yarn.nodemanager.remote-app-log-dir
/home/hadoop/logs/yarn_remotelog


yarn.app.mapreduce.am.staging-dir
/home/hadoop/logs/yarn_userstag


mapreduce.jobhistory.intermediate-done-dir
/home/hadoop/logs/yarn_intermediatedone


mapreduce.jobhistory.done-dir
/var/lib/hadoop/dfs/yarn_done




yarn.log-aggregation-enable
true


yarn.nodemanager.resource.memory-mb
2048


yarn.nodemanager.vmem-pmem-ratio
4.2


yarn.nodemanager.resource.cpu-vcores
2


yarn.nodemanager.aux-services
mapreduce_shuffle


yarn.nodemanager.aux-services.mapreduce.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler


Classpath for typical applications.
yarn.application.classpath

$HADOOP_HOME/etc/hadoop,
$HADOOP_HOME/share/hadoop/common/*,
$HADOOP_HOME/share/hadoop/common/lib/*,
$HADOOP_HOME/share/hadoop/hdfs/*,
$HADOOP_HOME/share/hadoop/hdfs/lib/*,
$HADOOP_HOME/share/hadoop/mapreduce/*,
$HADOOP_HOME/share/hadoop/mapreduce/lib/*,
$HADOOP_HOME/share/hadoop/yarn/*,
$HADOOP_HOME/share/hadoop/yarn/lib/*





-- 注意:两个namenode,funshion-hadoop194直接用上面的配置,
--       funshion-hadoop195的话,只需修改一个地方:修改yarn.resourcemanager.ha.id 属性值为 rm2 

-- Step 3.7 vi $HADOOP_HOME/etc/hadoop/fairscheduler.xml





1024 mb, 1 vcores
1536 mb, 1 vcores
5
300
1.0
root,yarn,search,hdfs


1024 mb, 1 vcores
1536 mb, 1 vcores


1024 mb, 1 vcores
1536 mb, 1 vcores



################################################################################## 

scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop195:/usr/local/hadoop/etc/hadoop/
scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop196:/usr/local/hadoop/etc/hadoop/
scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop197:/usr/local/hadoop/etc/hadoop/
scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop198:/usr/local/hadoop/etc/hadoop/

-- Step 4. 创建相关目录


mkdir ~/logs
mkdir ~/mydata

-- 备注:mydate目录下的相关子目录会自动生成,不需要创建。
-- 在每台集群机器上创建如上两个目录,并同步 $HADOOP_HOME/etc/hadoop目录下的所有文件到各节点


-- Step 5. 启动Zookeeper、JournalNode、格式化Hadoop集群并启动



-- Step 5.1 启动Zooker (ZK集群是funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198 五台服务器)


[hadoop@funshion-hadoop194 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop195 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop196 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop197 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop198 bin]$ /usr/local/zookeeper/bin/zkServer.sh start

-- 可以如下查看Zookeeper集群各节点的状态:
/usr/local/zookeeper/bin/zkServer.sh status


-- 然后在某一个namenode节点执行如下命令,创建命名空间
[hadoop@funshion-hadoop194 bin]$ cd $HADOOP_HOME
[hadoop@funshion-hadoop194 hadoop]$ ./bin/hdfs zkfc -formatZK

-- 备注:停止zookeeper相关命令类似如下:
/usr/local/zookeeper/bin/zkServer.sh stop
/usr/local/zookeeper/bin/zkServer.sh restart

-- Step 5.2 启动JournalNode进程(在funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198五台服务器上分别执行):


[hadoop@funshion-hadoop194 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop196 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop197 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop198 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode


-- Step 5.3 格式化Hadoop集群并启动:


-- 在 funshion-hadoop194 上执行:
[hadoop@funshion-hadoop194 bin]$ $HADOOP_HOME/bin/hdfs namenode -format mycluster
[hadoop@funshion-hadoop194 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start namenode

-- 上步执行完后,在 funshion-hadoop195 上执行:
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs namenode -bootstrapStandby
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start namenode

-- 上步执行完后,可以继续在某个 namenode 执行 $HADOOP_HOME/sbin/start-all.sh 启动datanode及yarn相关进程。

-- 因为是配置的自动故障转移,所以不能手工切换namenode的active和stadby角色。

-- 可以通过haadmin查看每个Service的角色状态:
[hadoop@funshion-hadoop194 lab]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn1
standby
[hadoop@funshion-hadoop194 lab]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn2
active
[hadoop@funshion-hadoop194 lab]$


-- 通过hdfs-site.xml中的如下配置,我们知道nn1是在 funshion-hadoop194上的namenode服务,nn2是funshion-hadoop195上的namenode服务

dfs.namenode.rpc-address.mycluster.nn1
funshion-hadoop194:8020


dfs.namenode.rpc-address.mycluster.nn2
funshion-hadoop195:8020


-- 所以,我们可以尝试 kill 掉 nn2(状态为active的namenode进程,然后去查看nn1的角色是否改变:
[hadoop@funshion-hadoop195 bin]$ jps
3199 JournalNode
3001 NameNode
1161 QuorumPeerMain
3364 DFSZKFailoverController
4367 Jps

[hadoop@funshion-hadoop195 bin]$ kill -9 3001
[hadoop@funshion-hadoop195 bin]$ jps
3199 JournalNode
1161 QuorumPeerMain
3364 DFSZKFailoverController
4381 Jps


[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn1
active
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /usr/local/hadoop/logs/hadoop-hadoop-namenode-funshion-hadoop195.out
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn1
active
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn2
standby


-- 甚至可以直接reboot状态为active的namenode节点(执行操作系统的重启动作,看另一个standby状态的namenode节点是否能正常转换成acitve状态
-- 甚至可以在有作业运行的时候去执行reboot操作系统(namenode的active节点执行)以测试双节点故障转移是否确实健壮


-- 集群相关网页:
-- http://funshion-hadoop194:50070/dfshealth.html#tab-overview

-- ##################################################################################


-- Step 6. 上传测试数据:


-- Step 6.1 安装wget包、创建相关目录及shell上传数据脚本:
[root@funshion-hadoop194 ~]# yum -y install wget
[hadoop@funshion-hadoop194 ~]$ 
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/datateam/ghh/lab
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/log_catch/down
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/log_catch/put
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/log_catch/zip
[hadoop@funshion-hadoop194 ~]$ vi /home/hadoop/datateam/ghh/lab/log_catch_hour_lzo.sh

#!/bin/bash


function f_show_info()
{
printf "%20s = %s\n" "$1" "$2"
return 0
}


function f_catch_all_day_log()
{
local str_date=""
local year=""
local month=""
local day=""


for(( str_date=${g_start_date};${str_date} do
year=$(date -d "${str_date}" +%Y )
month=$(date -d "${str_date}" +%m )
day=$(date -d "${str_date}" +%d )
f_catch_all_log ${year} ${month} ${day}
done
}


function f_catch_all_log()
{
local year="$1"
local month="$2"
local day="$3"
local hour=""
local date_hour=""
local date_dir=""
local hdfs_dir=""
local g_hdfs_dir=""
local hdfs_file=""
local url=""
local i=0
local nRet=0

for(( i=${g_start_hour};i do
hour=$(printf "%02d" "$i")
date_hour="${year}${month}${day}${hour}"
date_dir="${year}/${month}/${day}"
hdfs_dir="${year}/${month}/${day}/${hour}"
g_hdfs_dir="${g_hdfs_path}/${hdfs_dir}"
hdfs_file="${g_hdfs_path}/${hdfs_dir}/BeiJing_YiZhuang_CTC_${date_hour}.lzo"


url="${g_url}/${date_dir}/BeiJing_YiZhuang_CTC_${date_hour}.gz"
f_show_info "url" "${url}"
f_show_info "hdfs" "${hdfs_file}"
f_catch_log "${url}" "${hdfs_file}" "${g_hdfs_dir}"


hdfs_file="${g_hdfs_path}/${hdfs_dir}/BeiJing_ShangDi_CNC_${date_hour}.lzo"
url="${g_url}/${date_dir}/BeiJing_ShangDi_CNC_${date_hour}.gz"
f_show_info "url" "${url}"
f_show_info "hdfs" "${hdfs_file}"
f_catch_log "${url}" "${hdfs_file}" "${g_hdfs_dir}"
done
return $nRet
}


function f_catch_log()
{
local tmp_name=$( uuidgen | sed 's/-/_/g' )
local local_down_file="${g_local_down_path}/${tmp_name}"
local local_zip_file="${g_local_zip_path}/${tmp_name}"
local local_put_file="${g_local_put_path}/${tmp_name}"
local log_url="$1"
local hdfs_file="$2"
local nRet=0


if [[ 0 == $nRet ]];then
wget -O "${local_down_file}" "${log_url}"
nRet=$?
fi

if [[ 0 == $nRet ]];then
gzip -cd "${local_down_file}" | lzop -o "${local_zip_file}"
nRet=$?
fi


#       if [[ 0 == $nRet ]];then
#               gzip -cd "${local_down_file}" > "${local_zip_file}"
#               nRet=$?
#       fi


if [[ 0 == $nRet ]];then
mv "${local_zip_file}" "${local_put_file}"
hdfs dfs -mkdir -p "${g_hdfs_dir}"
hdfs dfs -put "${local_put_file}" "${hdfs_file}"
nRet=$?
fi


if [[ 0 == $nRet ]];then
hadoop jar /usr/local/hadoop/lib/native/hadoop-lzo-0.4.20-SNAPSHOT.jar com.hadoop.compression.lzo.LzoIndexer "${hdfs_file}"
nRet=$?
fi


rm -rf "${local_down_file}" "${local_put_file}" "${local_zip_file}"


return $nRet
}

# shell begins here

g_local_down_path="/home/hadoop/log_catch/down"
g_local_zip_path="/home/hadoop/log_catch/zip"
g_local_put_path="/home/hadoop/log_catch/put"

g_start_date=""
g_end_date=""
g_start_hour=0
g_end_hour=0
g_hdfs_path=""
g_url=""

nRet=0


if [[ 0 == $nRet ]];then
if [[ $# -ne 6 ]];then
f_show_info "cmd format" "sh ./log_catch.sh 'url' 'hdfs_path' 'start_date' 'end_date' 'start_hour' 'end_hour'"
nRet=1
else
g_url="$1"
g_hdfs_path="$2"
g_start_date="$3"
g_end_date="$4"
g_start_hour="$5"
g_end_hour="$6"
fi
fi


if [[ 0 == $nRet ]];then
f_catch_all_day_log
nRet=$?
fi


exit $nRet

-- Step 6.2 调用脚本上传数据:
[hadoop@funshion-hadoop194 ~]$ nohup sh /home/hadoop/datateam/ghh/lab/log_catch_hour_lzo.sh 'http://192.168.116.61:8081/website/pv/2' 'hdfs://mycluster/dw/logs/web/origin/pv/2' 20140524 20140525 0 23 &

-- nohup sh /home/hadoop/datateam/ghh/lab/log_catch_hour_lzo.sh 'http://192.168.116.61:8081/website/pv/2' 'hdfs://mycluster/dw/logs/web/origin/pv/2' 20140525 20140525 3 23 &

-- 上面这些脚本都是取公司的Oxeye的日志数据。(大家可以忽略此步操作)

-- Step 7. Hive安装(安装到196机器) (使用Hive与HBase整合安装;使用源码编译安装)

-- (其实应该先安装hbase,再安装hive可能顺序合理一点)


-- 参考:https://cwiki.apache.org/conflue ... iorto0.13onHadoop23
http://www.hadoopor.com/thread-5470-1-1.html
http://blog.csdn.net/hguisu/article/details/7282050
http://blog.csdn.net/hguisu/article/details/7282050
http://www.micmiu.com/bigdata/hive/hive-hbase-integration/

-- 源码下载编译操作如下:
mkdir -p /opt/software/hive_src
cd /opt/software/hive_src/
svn checkout http://svn.apache.org/repos/asf/hive/trunk/ hive_trunk
cd /opt/software/hive_src/hive_trunk


-- 下载以后,我们检查 hive_trunk目录下的pom.xml文件,发现hadoop-23.version这个变量已经引用了hadoop 2.4.0版本,所以,我们可以什么也不用修改,直接用ant去编译:
2.4.0


-- 或者如果发现版本不正确的话,我们可以这样指定参数执行(也可以修改pom.xml文件中对应正确的hadoop、hbase、zookeeper版本):
-- 最后我选用的版本相关参数如下:
2.4.0
0.98.3-hadoop1
0.98.3-hadoop2
3.4.6


-- 最后,开始编译:
cd /opt/software/hive_src/hive_trunk
mvn clean package -DskipTests -Phadoop-2,dist


[INFO] Hive .............................................. SUCCESS [  6.481 s]
[INFO] Hive Ant Utilities ................................ SUCCESS [  4.427 s]
[INFO] Hive Shims Common ................................. SUCCESS [  2.418 s]
[INFO] Hive Shims 0.20 ................................... SUCCESS [  1.284 s]
[INFO] Hive Shims Secure Common .......................... SUCCESS [  2.466 s]
[INFO] Hive Shims 0.20S .................................. SUCCESS [  0.961 s]
[INFO] Hive Shims 0.23 ................................... SUCCESS [  3.247 s]
[INFO] Hive Shims ........................................ SUCCESS [  0.364 s]
[INFO] Hive Common ....................................... SUCCESS [  5.259 s]
[INFO] Hive Serde ........................................ SUCCESS [  7.428 s]
[INFO] Hive Metastore .................................... SUCCESS [ 27.000 s]
[INFO] Hive Query Language ............................... SUCCESS [ 51.924 s]
[INFO] Hive Service ...................................... SUCCESS [  6.037 s]
[INFO] Hive JDBC ......................................... SUCCESS [ 14.293 s]
[INFO] Hive Beeline ...................................... SUCCESS [  1.406 s]
[INFO] Hive CLI .......................................... SUCCESS [ 10.297 s]
[INFO] Hive Contrib ...................................... SUCCESS [  1.418 s]
[INFO] Hive HBase Handler ................................ SUCCESS [ 33.679 s]
[INFO] Hive HCatalog ..................................... SUCCESS [  0.443 s]
[INFO] Hive HCatalog Core ................................ SUCCESS [  8.040 s]
[INFO] Hive HCatalog Pig Adapter ......................... SUCCESS [  1.795 s]
[INFO] Hive HCatalog Server Extensions ................... SUCCESS [  2.007 s]
[INFO] Hive HCatalog Webhcat Java Client ................. SUCCESS [  1.548 s]
[INFO] Hive HCatalog Webhcat ............................. SUCCESS [ 11.718 s]
[INFO] Hive HCatalog Streaming ........................... SUCCESS [  1.845 s]
[INFO] Hive HWI .......................................... SUCCESS [  1.246 s]
[INFO] Hive ODBC ......................................... SUCCESS [  0.626 s]
[INFO] Hive Shims Aggregator ............................. SUCCESS [  0.192 s]
[INFO] Hive TestUtils .................................... SUCCESS [  0.324 s]
[INFO] Hive Packaging .................................... SUCCESS [01:21 min]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 04:53 min
[INFO] Finished at: 2014-06-22T11:58:05+08:00
[INFO] Final Memory: 147M/1064M
[INFO] ------------------------------------------------------------------------

-- 最后,/opt/software/hive_src/hive_trunk/packaging/target 目录下的 apache-hive-0.14.0-SNAPSHOT-bin.tar.gz 文件,就是我们需要的安装包(这个版本还没有正式发布)

-- Step 7.1 My SQL安装(安装到194机器),并在My SQL中创建名为hive的数据库用以存放hive元数据:


-- 安装如下rpm包
rpm -ivh MySQL-client-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-devel-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-embedded-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -e --nodeps mysql-libs-5.1.66-2.el6_3.x86_64
rpm -ivh MySQL-server-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-shared-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-shared-compat-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-test-5.6.17-1.linux_glibc2.5.x86_64.rpm


A RANDOM PASSWORD HAS BEEN SET FOR THE MySQL root USER !
You will find that password in '/root/.mysql_secret'.

You must change that password on your first connect,
no other statement but 'SET PASSWORD' will be accepted.
See the manual for the semantics of the 'password expired' flag.

Also, the account for the anonymous user has been removed.

In addition, you can run:

 /usr/bin/mysql_secure_installation

which will also give you the option of removing the test database.
This is strongly recommended for production servers.


See the manual for more instructions.
Please report any problems at http://bugs.mysql.com/
The latest information about MySQL is available on the web at
 http://www.mysql.com
Support MySQL by buying support/licenses at http://shop.mysql.com
New default config file was created as /usr/my.cnf and
will be used by default by the server when you start it.
You may edit this file to change server settings
-- 查看安装生成的root用户随机密码:
[root@funshion-hadoop194 ~]# more /root/.mysql_secret
# The random password set for the root user at Mon Jun  9 18:18:48 2014 (local time): QVkyOjwSlAEiPaeT


-- 登录My SQL数据库并修改root密码,并创建名为hive的数据库与用户:
[root@funshion-hadoop194 ~]# service mysql start
Starting MySQL... SUCCESS! 


-- 设置mysql服务自启动
chkconfig mysql on


[root@funshion-hadoop194 ~]# mysql -uroot -pQVkyOjwSlAEiPaeT
Warning: Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.6.17

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SET PASSWORD = PASSWORD('bee56915');
Query OK, 0 rows affected (0.00 sec)


mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)


mysql> CREATE DATABASE `hive` /*!40100 DEFAULT CHARACTER SET utf8 */;
Query OK, 1 row affected (0.00 sec)


mysql> CREATE USER 'hive'@'funshion-hadoop196' IDENTIFIED BY password('bee56915');
Query OK, 0 rows affected (0.00 sec)


GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'%' Identified by 'bee56915'; 
GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'localhost' Identified by 'bee56915'; 
GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'127.0.0.1' Identified by 'bee56915';  
GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'funshion-hadoop196' Identified by 'bee56915'; 

-- Step 7.2 解决hive安装包到/usr/local下,添加hive相关环境变量:

[root@funshion-hadoop194 ~]# cd /opt/software
[root@funshion-hadoop194 software]# ls -l|grep hive
-rw-r--r--.  1 root root  65662469 May 15 14:04 hive-0.12.0-bin.tar.gz
[root@funshion-hadoop194 software]# tar -xvf ./hive-0.12.0-bin.tar.gz
[root@funshion-hadoop194 software]#  mv hive-0.12.0-bin /usr/local
[root@funshion-hadoop194 software]# cd /usr/local
[root@funshion-hadoop194 local]# chown -R hadoop.hadoop ./hive-0.12.0-bin
[root@funshion-hadoop194 local]# ln -s hive-0.12.0-bin hive

[hadoop@funshion-hadoop194 local]$ vi ~/.bash_profile
export HIVE_HOME=/usr/local/hive
export PATH=$PATH:$HIVE_HOME/bin

[hadoop@funshion-hadoop194 local]$ source ~/.bash_profile

-- Step 7.3 在My SQL数据库的hive数据库中执行创建hive元数据脚本:


[hadoop@funshion-hadoop194 mysql]$ mysql -uroot -pbee56915
Warning: Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.6.17 MySQL Community Server (GPL)


Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.


Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> use hive;
Database changed
mysql> source /usr/local/hive/scripts/metastore/upgrade/mysql/hive-schema-0.14.0.mysql.sql

mysql> show tables;
+---------------------------+
| Tables_in_hive            |
+---------------------------+
| BUCKETING_COLS            |
| CDS                       |
| COLUMNS_V2                |
| DATABASE_PARAMS           |
| DBS                       |
| DB_PRIVS                  |
| DELEGATION_TOKENS         |
| GLOBAL_PRIVS              |
| IDXS                      |
| INDEX_PARAMS              |
| MASTER_KEYS               |
| NUCLEUS_TABLES            |
| PARTITIONS                |
| PARTITION_EVENTS          |
| PARTITION_KEYS            |
| PARTITION_KEY_VALS        |
| PARTITION_PARAMS          |
| PART_COL_PRIVS            |
| PART_COL_STATS            |
| PART_PRIVS                |
| ROLES                     |
| ROLE_MAP                  |
| SDS                       |
| SD_PARAMS                 |
| SEQUENCE_TABLE            |
| SERDES                    |
| SERDE_PARAMS              |
| SKEWED_COL_NAMES          |
| SKEWED_COL_VALUE_LOC_MAP  |
| SKEWED_STRING_LIST        |
| SKEWED_STRING_LIST_VALUES |
| SKEWED_VALUES             |
| SORT_COLS                 |
| TABLE_PARAMS              |
| TAB_COL_STATS             |
| TBLS                      |
| TBL_COL_PRIVS             |
| TBL_PRIVS                 |
| TYPES                     |
| TYPE_FIELDS               |
| VERSION                   |
+---------------------------+
41 rows in set (0.00 sec)

mysql> grant all privileges on hive.* to 'hive'@'funshion-hadoop196';
Query OK, 0 rows affected (0.00 sec)

mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)

mysql> exit
Bye
[hadoop@funshion-hadoop194 mysql]$ 

-- Step 7.4 修改hive相关配置文件:

[hadoop@funshion-hadoop194 mysql]$ cd $HIVE_HOME/conf
[hadoop@funshion-hadoop194 conf]$ ls -l
total 92
-rw-rw-r--. 1 hadoop hadoop 81186 Oct 10  2013 hive-default.xml.template
-rw-rw-r--. 1 hadoop hadoop  2378 Oct 10  2013 hive-env.sh.template
-rw-rw-r--. 1 hadoop hadoop  2465 Oct 10  2013 hive-exec-log4j.properties.template
-rw-rw-r--. 1 hadoop hadoop  2870 Oct 10  2013 hive-log4j.properties.template

[hadoop@funshion-hadoop194 conf]$ mv hive-env.sh.template hive-env.sh
[hadoop@funshion-hadoop194 conf]$ mv hive-default.xml.template hive-site.xml


-- 7.4.1 修改 $HIVE_HOME/bin/hive-config.sh 文件,添加如下环境变量:

[hadoop@funshion-hadoop194 conf]$ vi $HIVE_HOME/bin/hive-config.sh

export JAVA_HOME=/usr/java/latest
export HIVE_HOME=/usr/local/hive
export HADOOP_HOME=/usr/local/hadoop

-- 7.4.2 修改 $HIVE_HOME/conf/hive-site.xml 的第2002行:

4.4.报错—请修改hive-site.xml:(vi编辑下: /auth)

-- 原值:
auth

-- 修改为:
auth

-- 7.4.3 修改 $HIVE_HOME/conf/hive-site.xml 的如下property:



-- 7.4.3.1
-- 原值:

 javax.jdo.option.ConnectionURL
 jdbc:derby:;databaseName=metastore_db;create=true
 JDBC connect string for a JDBC metastore


-- 修改为:

 javax.jdo.option.ConnectionURL
 jdbc:mysql://funshion-hadoop194:3306/hive?createDatabaseIfNotExist=true
 JDBC connect string for a JDBC metastore


-- 7.4.3.2
-- 原值:

 javax.jdo.option.ConnectionDriverName
 org.apache.derby.jdbc.EmbeddedDriver
 Driver class name for a JDBC metastore


-- 修改为:

 javax.jdo.option.ConnectionDriverName
 com.mysql.jdbc.Driver
 Driver class name for a JDBC metastore


-- 7.4.3.3
-- 原值:

javax.jdo.option.ConnectionUserName
APP
username to use against metastore database


-- 修改为:

javax.jdo.option.ConnectionUserName
hive
username to use against metastore database


-- 7.4.3.4
-- 原值:

javax.jdo.option.ConnectionPassword
mine
password to use against metastore database


-- 修改为

javax.jdo.option.ConnectionPassword
bee56915
password to use against metastore database


-- 7.4.3.5
-- 原值:

hive.metastore.warehouse.dir
/user/hive/warehouse
location of default database for the warehouse


-- 修改为:

hive.metastore.warehouse.dir
hdfs://mycluster:8020/user/hive/warehouse
location of default database for the warehouse


-- 7.4.3.6
-- 原值:

hive.exec.scratchdir
/tmp/hive-${user.name}
Scratch space for Hive jobs


-- 修改为:

hive.exec.scratchdir
hdfs://mycluster:8020/tmp/hive-${user.name}
Scratch space for Hive jobs


-- 添加:

hbase.zookeeper.quorum
funshion-hadoop194,funshion-hadoop195,funshion-hadoop196,funshion-hadoop197,funshion-hadoop198



hive.aux.jars.path
 
file:///usr/local/hive/lib/hive-ant-0.14.0-SNAPSHOT.jar,
file:///usr/local/hive/lib/protobuf-java-2.5.0.jar,
file:///usr/local/hbase/lib/hbase-server-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/hbase-client-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2-tests.jar,
file:///usr/local/hbase/lib/hbase-protocol-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/htrace-core-2.04.jar,
file:///usr/local/hive/lib/zookeeper-3.4.6.jar,
file:///usr/local/hive/lib/guava-11.0.2.jar




-- 上面格式是方便查看,真正使用下面的格式:将所有的jar包放到一行:

hive.aux.jars.path
file:///usr/local/hive/lib/hive-ant-0.14.0-SNAPSHOT.jar,file:///usr/local/hbase/lib/hbase-server-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/hbase-client-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2-tests.jar,file:///usr/local/hbase/lib/hbase-protocol-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/htrace-core-2.04.jar,file:///usr/local/hive/lib/zookeeper-3.4.6.jar



-- 首先需要把hive/lib下的hbase包替换成安装的hbase的,需要如下几下:
hbase-client-0.98.2-hadoop2.jar
hbase-common-0.98.2-hadoop2.jar
hbase-common-0.98.2-hadoop2-tests.jar
hbase-protocol-0.98.2-hadoop2.jar
htrace-core-2.04.jar
hbase-server-0.98.2-hadoop2.jar


将hadoop节点添加到hive-site.xml中

hbase.zookeeper.quorum
所有节点



-- 另外,你必须在创建Hive库表前,在HDFS上创建/tmp和/user/hive/warehouse(也称为hive.metastore.warehouse.dir所指定的目录),并且将它们的权限设置为chmod g+w。完成这个操作的命令如下:
$ $HADOOP_HOME/bin/hadoop fs -mkdir /tmp
$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hive/warehouse
$ $HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp
$ $HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse

-- Step 7.5 启动并登录hive,并创建hive表


14/06/16 18:58:50 WARN conf.HiveConf: DEPRECATED: hive.metastore.ds.retry.* no longer has any effect.  Use hive.hmshandler.retry.* instead


-- 集群启动:
# bin/hive --service hiveserver -hiveconf hbase.zookeeper.quorum=funshion-hadoop194,funshion-hadoop195,funshion-hadoop196,funshion-hadoop197,funshion-hadoop198 &
# bin/hive -hiveconf hbase.zookeeper.quorum=funshion-hadoop194,funshion-hadoop195,funshion-hadoop196,funshion-hadoop197,funshion-hadoop198 &
# bin/hive -hiveconf hive.root.logger=DEBUG,console hbase.master=funshion-hadoop194:60010


# bin/hive -hiveconf hbase.master=funshion-hadoop194:60010 --auxpath /usr/local/hive/lib/hive-ant-0.13.1.jar,/usr/local/hive/lib/protobuf-java-2.5.0.jar,/usr/local/hive/lib/hbase-client-0.98.3-hadoop2.jar, \
/usr/local/hive/lib/hbase-common-0.98.3-hadoop2.jar,/usr/local/hive/lib/zookeeper-3.4.6.jar,/usr/local/hive/lib/guava-11.0.2.jar


#bin/hive -hiveconf hbase.zookeeper.quorum=node1,node2,node3


-- 客户端登录:
$HIVE_HOME/bin/hive -h127.0.0.1 -p10000
$HIVE_HOME/bin/hive -hfunshion-hadoop194 -p10000
$HIVE_HOME/bin/hive -p10000


[hadoop@funshion-hadoop194 lib]$ hive --service hiveserver & 


[hadoop@funshion-hadoop194 lib]$ hive
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative


Logging initialized using configuration in jar:file:/usr/local/hive-0.12.0-bin/lib/hive-common-0.12.0.jar!/hive-log4j.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.4.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hive-0.12.0-bin/lib/slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
hive> show databases;
OK
Failed with exception java.io.IOException:java.io.IOException: Cannot create an instance of InputFormat class org.apache.hadoop.mapred.TextInputFormat as specified in mapredWork!


-- 如果报类似如上错误,在 ~/.bash_profile 添加环境变量,如下:

export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native/Linux-amd64-64
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/lib/native/hadoop-lzo-0.4.20-SNAPSHOT.jar


-- hive客户端登录:
[hadoop@funshion-hadoop194 bin]$  $HIVE_HOME/bin/hive -h127.0.0.1 -p10000
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative


Logging initialized using configuration in jar:file:/usr/local/hive-0.12.0-bin/lib/hive-common-0.12.0.jar!/hive-log4j.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.4.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hive-0.12.0-bin/lib/slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
[127.0.0.1:10000] hive> create database web;
OK
[127.0.0.1:10000] hive> CREATE EXTERNAL TABLE pv2(
                      >   protocol string, 
                      >   rprotocol string, 
                      >   time int, 
                      >   ip string, 
                      >   fck string, 
                      >   mac string, 
                      >   userid string, 
                      >   fpc string, 
                      >   version string, 
                      >   sid string, 
                      >   pvid string, 
                      >   config string, 
                      >   url string, 
                      >   referurl string, 
                      >   channelid string, 
                      >   vtime string, 
                      >   ext string, 
                      >   useragent string, 
                      >   step string, 
                      >   sestep string, 
                      >   seidcount string, 
                      >   ta string)
                      > PARTITIONED BY ( 
                      >   year string, 
                      >   month string, 
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1670
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1276
29
C# 教程
1256
24
聚类算法中的聚类效果评估问题 聚类算法中的聚类效果评估问题 Oct 10, 2023 pm 01:12 PM

聚类算法中的聚类效果评估问题,需要具体代码示例聚类是一种无监督学习方法,通过对数据进行聚类,将相似的样本归为一类。在聚类算法中,如何评估聚类的效果是一个重要的问题。本文将介绍几种常用的聚类效果评估指标,并给出相应的代码示例。一、聚类效果评估指标轮廓系数(SilhouetteCoefficient)轮廓系数是通过计算样本的紧密度和与其他簇的分离度来评估聚类效

教你如何诊断常见问题的iPhone故障 教你如何诊断常见问题的iPhone故障 Dec 03, 2023 am 08:15 AM

iPhone以其强大的性能和多方面的功能而闻名,它不能幸免于偶尔的打嗝或技术困难,这是复杂电子设备的共同特征。遇到iPhone问题可能会让人感到沮丧,但通常不需要警报。在这份综合指南中,我们旨在揭开与iPhone使用相关的一些最常遇到的挑战的神秘面纱。我们的分步方法旨在帮助您解决这些常见问题,提供实用的解决方案和故障排除技巧,让您的设备恢复到最佳工作状态。无论您是面对一个小故障还是更复杂的问题,本文都可以帮助您有效地解决这些问题。一般故障排除提示在深入研究具体的故障排除步骤之前,以下是一些有助于

解决jQuery无法获取表单元素值的方法 解决jQuery无法获取表单元素值的方法 Feb 19, 2024 pm 02:01 PM

解决jQuery.val()无法使用的问题,需要具体代码示例对于前端开发者,使用jQuery是常见的操作之一。其中,使用.val()方法来获取或设置表单元素的值是非常常见的操作。然而,在一些特定的情况下,可能会出现无法使用.val()方法的问题。本文将介绍一些常见的情况以及解决方案,并提供具体的代码示例。问题描述在使用jQuery开发前端页面时,有时候会碰

雾锁王国能野地搭建筑吗 雾锁王国能野地搭建筑吗 Mar 07, 2024 pm 08:28 PM

玩家在雾锁王国中进行游戏时可以收集不同的材料用来建造建筑,有很多玩家想知道野地搭建筑吗,雾锁王国能野地是不能搭建筑的,必须要在祭坛的范围内才可以搭建。雾锁王国能野地搭建筑吗答:不能。1、雾锁王国能野地是不能搭建筑的。2、建筑必须要在祭坛的范围内才可以搭建。3、玩家可以自行放置灵火祭坛,但一旦离开了范围,将无法进行建筑搭建。4、我们也可以直接在山上挖个洞当做我们的家,这样不用耗建筑材料。5、玩家自己搭建的建筑中,存在舒适度机制,也就是说,内饰越好,舒适度越高。6、高舒适度将为玩家带来属性加成,例如

机器学习模型的泛化能力问题 机器学习模型的泛化能力问题 Oct 08, 2023 am 10:46 AM

机器学习模型的泛化能力问题,需要具体代码示例随着机器学习的发展和应用越来越广泛,人们越来越关注机器学习模型的泛化能力问题。泛化能力指的是机器学习模型对未标记数据的预测能力,也可以理解为模型在真实世界中的适应能力。一个好的机器学习模型应该具有较高的泛化能力,能够对新的数据做出准确的预测。然而,在实际应用中,我们经常会遇到模型在训练集上表现良好,但在测试集或真实

如龙8酒类大师考试问题有哪些 如龙8酒类大师考试问题有哪些 Feb 02, 2024 am 10:18 AM

如龙8酒类大师考试涉及的问题包括哪些?对应的答案是什么?如何快速通过考试?酒类大师考试活动中有许多需要回答的问题,我们可以参考答案来解决。这些问题都涉及到酒的知识。如果需要参考,让我们一起来看看如龙8酒类大师考试问题答案的详细解析!如龙8酒类大师考试问题答案详解1、关于“酒”的问题。这是一种管由王室建立的蒸馏洒厂生产的蒸馏酒,以夏威夷大量种植的甘盘的糖分为原料酿制。请问这种酒叫什么?答:朗姆酒2、关于“酒”的问题。图片上是一种使用干琴洒和干苦艾酒调配而成的酒。它的特点是加入了橄榄,被誉为“鸡尼酒

图像压缩中的失真控制问题 图像压缩中的失真控制问题 Oct 08, 2023 pm 07:17 PM

图像压缩是在储存和传输图像时常用的技术手段,它可以减小图像的存储空间,加快图像的传输速度。图像压缩的目标是尽可能地减小图像文件的大小,同时尽量保持图像的视觉质量,以便人眼能够接受。然而,在图像压缩过程中,常常会产生一定程度的失真。本文将讨论图像压缩中的失真控制问题,并提供一些具体的代码示例。JPEG压缩算法及其失真问题JPEG是一种常见的图像压缩标准,它采用

在PyCharm中快速安装PyTorch:简易指南 在PyCharm中快速安装PyTorch:简易指南 Feb 24, 2024 pm 09:54 PM

PyTorch安装指南:在PyCharm中快速搭建开发环境PyTorch是当前深度学习领域中备受欢迎的框架之一,具有易用性和灵活性的特点,深受开发者青睐。本文将为大家介绍如何在PyCharm中快速搭建PyTorch的开发环境,方便大家开始深度学习项目的开发。步骤一:安装PyTorch首先,我们需要安装PyTorch。PyTorch的安装通常需要考虑到系统环境

See all articles