首頁 後端開發 Python教學 深入解析Python编程中JSON模块的使用

深入解析Python编程中JSON模块的使用

Jun 06, 2016 am 11:14 AM
json python

JSON编码支持的基本数据类型为 None , bool , int , float 和 str , 以及包含这些类型数据的lists,tuples和dictionaries。 对于dictionaries,keys需要是字符串类型(字典中任何非字符串类型的key在编码时会先转换为字符串)。 为了遵循JSON规范,你应该只编码Python的lists和dictionaries。 而且,在web应用程序中,顶层对象被编码为一个字典是一个标准做法。

JSON编码的格式对于Python语法而已几乎是完全一样的,除了一些小的差异之外。 比如,True会被映射为true,False被映射为false,而None会被映射为null。 下面是一个例子,演示了编码后的字符串效果:

>>> json.dumps(False)
'false'
>>> d = {'a': True,
...   'b': 'Hello',
...   'c': None}
>>> json.dumps(d)
'{"b": "Hello", "c": null, "a": true}'
>>>
登入後複製

如果你试着去检查JSON解码后的数据,你通常很难通过简单的打印来确定它的结构, 特别是当数据的嵌套结构层次很深或者包含大量的字段时。 为了解决这个问题,可以考虑使用pprint模块的 pprint() 函数来代替普通的 print() 函数。 它会按照key的字母顺序并以一种更加美观的方式输出。 下面是一个演示如何漂亮的打印输出Twitter上搜索结果的例子:

>>> from urllib.request import urlopen
>>> import json
>>> u = urlopen('http://search.twitter.com/search.json?q=python&rpp=5')
>>> resp = json.loads(u.read().decode('utf-8'))
>>> from pprint import pprint
>>> pprint(resp)
{'completed_in': 0.074,
'max_id': 264043230692245504,
'max_id_str': '264043230692245504',
'next_page': '?page=2&max_id=264043230692245504&q=python&rpp=5',
'page': 1,
'query': 'python',
'refresh_url': '?since_id=264043230692245504&q=python',
'results': [{'created_at': 'Thu, 01 Nov 2012 16:36:26 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:14 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:13 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:07 +0000',
      'from_user': ...
      }
      {'created_at': 'Thu, 01 Nov 2012 16:36:04 +0000',
      'from_user': ...
      }],
'results_per_page': 5,
'since_id': 0,
'since_id_str': '0'}
>>>
登入後複製

一般来讲,JSON解码会根据提供的数据创建dicts或lists。 如果你想要创建其他类型的对象,可以给 json.loads() 传递object_pairs_hook或object_hook参数。 例如,下面是演示如何解码JSON数据并在一个OrderedDict中保留其顺序的例子:

>>> s = '{"name": "ACME", "shares": 50, "price": 490.1}'
>>> from collections import OrderedDict
>>> data = json.loads(s, object_pairs_hook=OrderedDict)
>>> data
OrderedDict([('name', 'ACME'), ('shares', 50), ('price', 490.1)])
>>>
登入後複製

下面是如何将一个JSON字典转换为一个Python对象例子:

>>> class JSONObject:
...   def __init__(self, d):
...     self.__dict__ = d
...
>>>
>>> data = json.loads(s, object_hook=JSONObject)
>>> data.name
'ACME'
>>> data.shares
50
>>> data.price
490.1
>>>
登入後複製

最后一个例子中,JSON解码后的字典作为一个单个参数传递给 __init__() 。 然后,你就可以随心所欲的使用它了,比如作为一个实例字典来直接使用它。

在编码JSON的时候,还有一些选项很有用。 如果你想获得漂亮的格式化字符串后输出,可以使用 json.dumps() 的indent参数。 它会使得输出和pprint()函数效果类似。比如:

>>> print(json.dumps(data))
{"price": 542.23, "name": "ACME", "shares": 100}
>>> print(json.dumps(data, indent=4))
{
  "price": 542.23,
  "name": "ACME",
  "shares": 100
}
>>>
登入後複製

对象实例通常并不是JSON可序列化的。例如:

>>> class Point:
...   def __init__(self, x, y):
...     self.x = x
...     self.y = y
...
>>> p = Point(2, 3)
>>> json.dumps(p)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.3/json/__init__.py", line 226, in dumps
    return _default_encoder.encode(obj)
  File "/usr/local/lib/python3.3/json/encoder.py", line 187, in encode
    chunks = self.iterencode(o, _one_shot=True)
  File "/usr/local/lib/python3.3/json/encoder.py", line 245, in iterencode
    return _iterencode(o, 0)
  File "/usr/local/lib/python3.3/json/encoder.py", line 169, in default
    raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <__main__.Point object at 0x1006f2650> is not JSON serializable
>>>
登入後複製

如果你想序列化对象实例,你可以提供一个函数,它的输入是一个实例,返回一个可序列化的字典。例如:

def serialize_instance(obj):
  d = { '__classname__' : type(obj).__name__ }
  d.update(vars(obj))
  return d
登入後複製

如果你想反过来获取这个实例,可以这样做:

# Dictionary mapping names to known classes
classes = {
  'Point' : Point
}

def unserialize_object(d):
  clsname = d.pop('__classname__', None)
  if clsname:
    cls = classes[clsname]
    obj = cls.__new__(cls) # Make instance without calling __init__
    for key, value in d.items():
      setattr(obj, key, value)
      return obj
  else:
    return d

登入後複製

下面是如何使用这些函数的例子:

>>> p = Point(2,3)
>>> s = json.dumps(p, default=serialize_instance)
>>> s
'{"__classname__": "Point", "y": 3, "x": 2}'
>>> a = json.loads(s, object_hook=unserialize_object)
>>> a
<__main__.Point object at 0x1017577d0>
>>> a.x
2
>>> a.y
3
>>>
登入後複製

json 模块还有很多其他选项来控制更低级别的数字、特殊值如NaN等的解析。 可以参考官方文档获取更多细节。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1318
25
PHP教程
1268
29
C# 教程
1248
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles