Binlog中table_map_id 的探究_MySQL
bitsCN.com
背景:
最近,线上Row Based Replication(下称RBR)环境中遇到了一个Bug。这个bug简单的描述就是:RBR对于DML需要通过table-map的event来标注每一个有更新的表。
而当一个DML同时操作多个表,且其中2个表的mapid相同时(通常为0),会导致slave执行这个event时crash,并重启mysqld实例
可见这个bug的毁灭性极大。
那么table-map-id 究竟从何而来?有什么办法知道每个表table-map-id,从而进行一些必要的监控呢?
下文将用几个例子来进行分析说明。
1. table-map-id 和 Innodb的table-id是否是同一个概念?
其实这个问题的答案是显而易见的。因为并非Innodb的表才支持RBR,如果这个问题答案为“是”,那么非innodb的表在RBR中的table-map-id从何而来呢?又怎么保证和innodb的map-id不重复呢?
所以,显然table-map-id和Innodb数据字典中的table-id是完全不同的两个概念。
即便如此,下面还是用一个实例进行验证
create table map_id_test (ID int primary key);insert into map_id_test values (1);show binlog events in 'log-prefix.000025';
输出结果:
Log_name Pos Event_type Server_id End_log_pos Infolog-prefix.000025 2156 Query 15757 2224 BEGINlog-prefix.000025 2224 Table_map 15757 2274 table_id: 88 (test.map_id_test)log-prefix.000025 2274 Write_rows 15757 2308 table_id: 88 flags: STMT_END_Flog-prefix.000025 2308 Xid 15757 2335 COMMIT /* xid=346 */
查看Innodb的table-id:
select TABLE_ID from INNODB_SYS_TABLESTATS where `SCHEMA`='test' and NAME='map_id_test';
得到TABLE_ID = 170
2. table-map-id是否和物理文件有绑定关系
虽然table-map-id和Innodb的table-id是完全不同的概念。而我们知道Innodb中的table-id和物理文件有绑定关系,即rename table的操作不会改变dict-table中的table-id。
那么binlog中的table-map-id是不是有可能借鉴了这种实现方式,也有这个特性呢?
下面是具体测试过程
set global binlog_format='row';create table map_id_test1 (ID int primary key);create table map_id_test2 (ID int primary key);insert into map_id_test1 values (1);insert into map_id_test2 values (1);show binlog events in 'log-prefix.000025';
输出结果如下:此时table1 对应table_id:83 , tabl2 对应table_id:84
Log_name Pos Event_type Server_id End_log_pos Infolog-prefix.000025 1157 Query 15757 1225 BEGINlog-prefix.000025 1225 Table_map 15757 1276 table_id: 83 (test.map_id_test1)log-prefix.000025 1276 Write_rows 15757 1310 table_id: 83 flags: STMT_END_Flog-prefix.000025 1310 Xid 15757 1337 COMMIT /* xid=327 */log-prefix.000025 1337 Query 15757 1405 BEGINlog-prefix.000025 1405 Table_map 15757 1456 table_id: 84 (test.map_id_test2)log-prefix.000025 1456 Write_rows 15757 1490 table_id: 84 flags: STMT_END_Flog-prefix.000025 1490 Xid 15757 1517 COMMIT /* xid=330 */
执行rename table,交换table1和table2
rename table map_id_test1 to map_id_test1_bak,map_id_test2 to map_id_test1, map_id_test1_bak to map_id_test2;
查看binlog:此时table1 对应table_id:86 , tabl2 对应table_id:87。
Log_name Pos Event_type Server_id End_log_pos Infolog-prefix.000025 1688 Query 15757 1756 BEGINlog-prefix.000025 1756 Table_map 15757 1807 table_id: 86 (test.map_id_test1)log-prefix.000025 1807 Write_rows 15757 1841 table_id: 86 flags: STMT_END_Flog-prefix.000025 1841 Xid 15757 1868 COMMIT /* xid=334 */log-prefix.000025 1868 Query 15757 1936 BEGINlog-prefix.000025 1936 Table_map 15757 1987 table_id: 87 (test.map_id_test2)log-prefix.000025 1987 Write_rows 15757 2021 table_id: 87 flags: STMT_END_Flog-prefix.000025 2021 Xid 15757 2048 COMMIT /* xid=335 */
从实验可以得出结论,RBR中的table_id 不仅和物理文件没有绑定关系,在MySQL实例的运行过程中也不是静态不变的。
因此,大胆猜测,table_id 和file handler有关系。下面的测试将进行验证。
3. table_id 和file handler是否有直接联系?
insert into map_id_test1 values (3);flush tables;insert into map_id_test1 values (4);show binlog events in 'log-prefix.000025';
执行结果: 从结果可以看出,flush table导致了,file handler的重新打开。同时也使table-map-id 发生了变化,且线性递增。
Log_name Pos Event_type Server_id End_log_pos Infolog-prefix.000025 2424 Query 15757 2492 BEGINlog-prefix.000025 2492 Table_map 15757 2543 table_id: 89 (test.map_id_test1)log-prefix.000025 2543 Write_rows 15757 2577 table_id: 89 flags: STMT_END_Flog-prefix.000025 2577 Xid 15757 2604 COMMIT /* xid=383 */log-prefix.000025 2604 Query 15757 2679 use `test`; flush tableslog-prefix.000025 2679 Query 15757 2747 BEGINlog-prefix.000025 2747 Table_map 15757 2798 table_id: 90 (test.map_id_test1)log-prefix.000025 2798 Write_rows 15757 2832 table_id: 90 flags: STMT_END_Flog-prefix.000025 2832 Xid 15757 2859 COMMIT /* xid=385 */
结论:
1. RBR中的Table_ID 和Innodb中的table_id 没有关系,且和物理文件没有对应关系。
2. Flush Table 可以重置RBR中的Table_ID ,如果有表遇到了map_id=0 的情况,可以使用这个方法尝试解决问题。
3. 虽然和File Handler 有关,但是和 /proc/$PID/fd/ 中的fd数值没有直接联系
bitsCN.com

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA

InnoDBBufferPool通過緩存數據和索引頁來減少磁盤I/O,提升數據庫性能。其工作原理包括:1.數據讀取:從BufferPool中讀取數據;2.數據寫入:修改數據後寫入BufferPool並定期刷新到磁盤;3.緩存管理:使用LRU算法管理緩存頁;4.預讀機制:提前加載相鄰數據頁。通過調整BufferPool大小和使用多個實例,可以優化數據庫性能。

MySQL適合Web應用和內容管理系統,因其開源、高性能和易用性而受歡迎。 1)與PostgreSQL相比,MySQL在簡單查詢和高並發讀操作上表現更好。 2)相較Oracle,MySQL因開源和低成本更受中小企業青睞。 3)對比MicrosoftSQLServer,MySQL更適合跨平台應用。 4)與MongoDB不同,MySQL更適用於結構化數據和事務處理。

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。
