目錄
以大模型提昇文字嵌入
1. 合成資料產生
2. 訓練
#實驗結果
合成資料統計
主要結果
首頁 科技週邊 人工智慧 無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

Jan 30, 2024 pm 09:39 PM
模型 訓練

文字嵌入(word embedding)是自然語言處理(NLP)領域的基礎技術,它能夠將文字對應到語意空間,並轉化為稠密的向量表示。這種方法已被廣泛應用於各種NLP任務,包括資訊檢索(IR)、問答、文字相似度計算和推薦系統等。透過文本嵌入,我們可以更好地理解文本的含義和關係,從而提高NLP任務的效果。

在資訊檢索(IR)領域,第一階段的檢索通常使用文字嵌入進行相似度計算。它透過在大規模語料庫中召回一個小的候選文件集,然後進行細粒度的計算。基於嵌入的檢索也是檢索增強生成(RAG)的重要組成部分。它使得大型語言模型(LLM)能夠存取動態的外部知識,而無需修改模型參數。這樣一來,IR系統可以更好地利用文字嵌入和外部知識,提高檢索效果。

早期的文本嵌入學習方法如word2vec和GloVe雖然被廣泛應用,但它們的靜態特性限制了對自然語言中豐富上下文資訊的捕捉能力。然而,隨著預訓練語言模型的興起,一些新方法如Sentence-BERT和SimCSE透過微調BERT來學習文本嵌入,在自然語言推理(NLI)資料集上取得了顯著的進展。這些方法利用BERT的上下文感知能力,能夠更好地理解文本的語義和語境,從而提高了文本嵌入的品質和表達能力。透過預訓練和微調的結合,這些方法能夠從大規模的語料庫中學習到更豐富的語義信息,為自然語言處理

為了提高文本嵌入性能和魯棒性,先進的方法如E5和BGE採用了多階段訓練。它們首先對數十億個弱監督文本對進行預訓練,然後再在幾個標註資料集上進行微調。這種策略能夠有效地提昇文本嵌入的表現。

現有的多階段方法仍有兩個缺陷:

#1.建構一個複雜的多階段訓練pipeline,需要大量的工程工作來管理大量的相關性資料對(relevance pairs)。

2. 微調依賴人工收集的資料集,而這些資料集往往受到任務多樣性和語言覆蓋範圍的限制。

大部分方法都使用BERT式編碼器,忽略了更好的LLM和相關技術的訓練進展。

微軟的研究團隊最近提出了一種簡單而高效的文字嵌入訓練方法,以克服先前方法存在的一些缺陷。這種方法不需要複雜的管道設計或人工建構的資料集,而是利用LLM來合成多樣化的文字資料。透過這種方法,他們能夠為近100種語言的數十萬個文本嵌入任務產生高品質的文本嵌入,而整個訓練過程不到1000步。

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

論文連結:https://arxiv.org/abs/2401.00368

#具體來說,研究人員使用兩步驟提示策略,首先提示LLM腦力激盪候選任務池,然後提示LLM從池中產生給定任務的資料。

為了涵蓋不同的應用場景,研究人員為每個任務類型設計了多個提示模板,並將不同模板產生的資料進行聯合收割機組合,以提高多樣性。

實驗結果證明,當「僅對合成資料」進行微調時,Mistral-7B在BEIR和MTEB基準上獲得了非常有競爭力的性能;當同時加入合成和標註資料微調時,即可達到sota效能。

以大模型提昇文字嵌入

1. 合成資料產生

利用GPT-4等最先進的大型語言模型(LLM)來合成資料越來越受到重視,可以增強模型在多任務和多語言上的能力多樣性,進而可以訓練出更健壯的文本嵌入,在各種下游任務(如語義檢索、文本相似度計算、聚類)中都能表現良好。

為了產生多樣化的合成數據,研究人員提出了一個簡單的分類法,先將嵌入任務分類,然後再對每類任務使用不同的提示模板。

非對稱任務(Asymmetric Tasks)

#

包含查詢(query)和文件在語意上相關但彼此不互為改寫(paraphrase)的任務。

根據查詢和文檔的長度,研究人員進一步將非對稱任務分為四個子類別:短-長匹配(短查詢和長文檔,商業搜尋引擎中的典型場景),長-短匹配,短-短匹配和長-長匹配。

對於每個子類別,研究人員設計了一個兩步驟提示模板,首先提示LLM腦力激盪的任務列表,然後產生一個具體的例子的任務定義的條件;從GPT -4的輸出大多連貫一致,品質很高。

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

在初步實驗中,研究人員也嘗試使用單一提示產生任務定義和查詢文件對,但資料多樣性不如上述的兩步方法。

對稱任務

#主要包括具有相似語意但不同表面形式的查詢和文件。

文中研究了兩個應用場景:單語種(monolingual)語義文本相似性(STS)和雙文本檢索,並且為每個場景設計了兩個不同的提示模板,根據其特定目標進行定制,由於任務的定義比較簡單,所以腦力激盪步驟可以省略。

為了進一步提高提示詞的多樣性,提高合成資料的多樣性,研究人員在每個提示板中加入了幾個佔位符,在運行時隨機採樣,例如“{query_length}”代表從集合“{少於5個單詞,5-10個單詞,至少10個單詞}”中採樣的。

為了產生多語言數據,研究人員從XLM-R的語言清單中取樣「{language}」的值,給予高資源語言更多的權重;任何不符合預定義JSON格式的產生資料都會在解析過程中被丟棄;也會根據精確的字串比對刪除重複項。

2. 訓練

給定一個相關的查詢-文檔對,先使用原始查詢q 來產生一個新的指令q_inst,其中「{task_definition}」是嵌入任務的一句話所描述的佔位符。

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

對於產生的合成數據,使用腦力激盪步驟的輸出;對於其他數據集,例如MS-MARCO,研究人員手動建立任務定義並將其應用於資料集中的所有查詢,不修改文件端的任何指令前綴。

透過這種方式,可以預先建立文件索引,並且可以透過僅更改查詢端來自訂要執行的任務。

給定一個預先訓練的LLM,將一個[EOS]標記附加到查詢和文件的末尾,然後饋送到LLM中,透過取得最後一層[EOS]向量來取得查詢和文件嵌入。

然後採用標準的InfoNCE loss對批內negatives和hard negatives進行損失計算。

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

其中ℕ表示所有negatives的集合,無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務是用來計算查詢和文件之間的匹配分數, t是一個溫度超參數,在實驗中固定為0.02

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

#實驗結果

合成資料統計

研究人員使用Azure OpenAI服務產生了500k個樣本,包含150k條獨特指令,其中25%由GPT-3.5-Turbo生成,剩餘由GPT-4生成,總共消耗了1.8億個token 。

主要語言是英語,總共涵蓋93種語言;對於75種低資源語言,平均每種語言約有1k個樣本。

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

在資料品質方面,研究人員發現GPT-3.5-Turbo的部分輸出並沒有嚴格遵循提示範本中規定的準則,但儘管如此,整體品質仍然是可以接受的,初步實驗也證明了採用這一資料子集的好處。

模型微調與評估

#研究者對預訓練Mistral-7B使用上述損失微調1個epoch,遵循RankLLaMA的訓練方法,並使用秩為16的LoRA。

為了進一步降低GPU記憶體需求,採用梯度檢查點、混合精度訓練和DeepSpeed ZeRO-3等技術。

在訓練資料方面,同時使用了產生的合成資料和13個公共資料集,採樣後產生了約180萬個範例。

為了與先前的一些工作進行公平比較,研究人員也報告了當唯一的標註監督是MS-MARCO篇章排序資料集時的結果,還在MTEB基准上對模型進行了評估。

主要結果

下表中可以看到,文中得到的模型「E5mistral-7B full data」在MTEB基準測試中獲得了最高的平均分,比之前最先進的模型高出2.4分。

在「w/ synthetic data only」設定中,沒有使用標註資料進行訓練,但效能仍然很有競爭力。

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

研究人員也對幾種商業文本嵌入模型進行了比較,但由於這些模型缺乏透明度和文檔,因此無法進行公平的比較。

不過,在BEIR基準上的檢索效能比較結果中可以看到,訓練得到的模型在很大程度上優於目前的商業模型。

無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務

多語言檢索

#為了評估模型的多語言能力,研究人員在MIRACL資料集上進行了評估,包含18種語言的人工標註查詢和相關性判斷。

結果顯示,該模型在高資源語言上超過了mE5-large,尤其是在英語上,性能表現更出色;不過對於低資源語言來說,該模型與mE5-base相比仍不理想。

研究人員將此歸因於Mistral-7B主要在英語資料上進行了預訓練,預測多語言模型可以用該方法來彌補這一差距。

以上是無需人工標註! LLM加持文本嵌入學習:輕鬆支援100種語言,適配數十萬名下游任務的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1662
14
CakePHP 教程
1418
52
Laravel 教程
1311
25
PHP教程
1261
29
C# 教程
1234
24
開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) 牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對

快手版Sora「可靈」開放測試:生成超120s視頻,更懂物理,複雜運動也能精準建模 快手版Sora「可靈」開放測試:生成超120s視頻,更懂物理,複雜運動也能精準建模 Jun 11, 2024 am 09:51 AM

什麼?瘋狂動物城被國產AI搬進現實了?與影片一同曝光的,是一款名為「可靈」全新國產影片生成大模型。 Sora利用了相似的技術路線,結合多項自研技術創新,生產的影片不僅運動幅度大且合理,還能模擬物理世界特性,具備強大的概念組合能力與想像。數據上看,可靈支持生成長達2分鐘的30fps的超長視頻,分辨率高達1080p,且支援多種寬高比。另外再劃個重點,可靈不是實驗室放出的Demo或影片結果演示,而是短影片領域頭部玩家快手推出的產品級應用。而且主打一個務實,不開空頭支票、發布即上線,可靈大模型已在快影

See all articles