全面比較程式語言Julia和Python,讓您更容易做出抉擇!
長期以來,Python一直是程式設計師、甚至其他專業人士最喜歡的程式語言之一。 Facebook、Instagram、Spotify、Netflix、ILM、Dropbox、Yahoo!和Google都在其應用程式服務中使用Python。
不過,隨著應用程式業務對於資料運算和科學運算需求的持續增加,人們往往需要依賴一種更有效率的資料處理語言。為此,Alan Edelman、Viral B. Shah、Jeff Bezanson和Stefan Karpinski於2021年開發了Julia。它在算術程式設計(arithmetic coding)方面可以作為Python的絕佳替代品,協助進行各項資料處理工作。目前,Julia已經成為了資料科學、視覺化、機器學習、以及人工智慧領域重要的工具之一。
Julia的特點
為了解決Python等語言在資料處理等應用情境中的科學運算能力不足等問題。 Julia在開發之初就被設計為旨在使用LLVM(Low Level Virtual Machine)編譯器框架所建構的即時編譯器(just-in-time,JIT),來提高執行時期的效能。在最好的情況下,Julia會在編譯而不是在解釋時,可以達到、甚至超過C語言的表現。
Julia的互動式命令列類似Python的REPL(read-eval-print loop,讀取-評估-列印循環)。各種一次性使用的腳本和命令可以立即插入其中。同時,Julia有著與Python類似的、簡短且有效的語法。
Julia可以直接與第三方的C和Fortran庫進行通訊。您可以使用PyCall模組作為Python程式的接口,並在Python和Julia之間傳輸資料。
Julia能夠以一種類似於Lisp(List Processing,一種早期自由軟體專案)語言的方式,產生應用程序,甚至去編輯它們的程式碼。在Julia 1.1中被引入的調試套件,則使得您能夠在本地REPL中,遍歷程式碼的執行結果,檢查變量,以及將斷點應用到程式碼中。例如,逐一程式碼執行的函數可以去執行各種細粒度的任務。
Python的特點
近年來,經典且全面的Python持續與大量第三方程式保持著密切的聯繫。雖然Python當初並非針對資料科學家而設計,但是它已經被運用到了該領域。由於Python模組能夠簡化特殊演算法的創建,因此許多資料科學家和機器學習專業人士,都會使用Python進行情感分析和自然語言處理(natural language processing,NLP)。
由於屬於一種解釋型語言,因此Python的程式碼並不需要經歷編譯的過程。它不但開源而且可以免費下載。 Python能夠支援所有物件導向的概念,其中包括:類別、多態性、以及封裝等。由於本身俱有可擴展性,因此Python程式碼可以用C或C 進行編寫和編譯。
Python屬於一種易於學習和編寫的高階程式語言。透過匯入預先存在的Python庫,開發人員可以不必重新輸入相同的數據,進而節省了開發時間。其逐行順序執行的方式簡化了調試過程。而在運行時,Python變數的資料類型則取決於它的用途,而並非其聲明。
而作為一種物件導向的解釋性程式語言,Python在動態類型、高階資料結構、以及動態綁定等方面具有較強的適應性,程式設計師僅透過幾行程式碼,便可創建出動態的程式。因此,Python的流行和使用都非常廣泛。
Python的主要弱點是處理速度較慢。當然,Python對此也在持續改進中。其新的、簡化了的PyPy 7.1解譯器在速度上提升了不少。此外,Python正在透過平行和多核心計算進行速度上的提升。
Julia與Python的全面比較
1.專為機器學習而設計
Python可用於執行各項應用活動。而Julia的設計則主要考慮的是機器學習和統計工作的負荷。
a) Julia具有在高級統計方面的顯著優勢;而Python不一定能夠處理機器學習中用到的所有方程式和矩陣。例如,在線性代數方面,「vanilla」Julia的表現就明顯優於「vanilla」Python。
b) Julia在非套件(non-package)體驗方面優於Python,更適合機器學習類別計算;當然作為一門優秀的語言,Python也可以通過NumPy(一種開源的Python數值計算擴展)來儲存和處理大型矩陣。
c) Julia的操作數系統(operand system)與用於統計分析、繪圖的R語言操作環境旗鼓相當。而Python在操作計算方面的性能劣勢較為明顯。
2.速度
a) Julia的效能與速度可與Fortran和C等編譯性語言相媲美。不過,Julia並非解釋型語言,它主要依賴類型聲明,來執行那些需要在執行時編譯的程式。
b) 開發人員可以使用Julia來實現高效能的應用,而無需使用手動分析和最佳化方法。這對效能問題的解決,十分有利。
c) 憑藉著豐富的計算和數值特徵,Julia的程式執行效率很高。此外,它還具有多重分派能力,可以快速地發展出陣列和整數等資料類型。
d) Python開發人員(https://skillsstreet.com/python-developer-skills/)正在透過最佳化工具、第三方JIT編譯器、以及外部函式庫來進一步提高Python的速度。
3.在資料科學中的應用
a) 如前所述,Python可被用於各種目的,資料分析只是其中一個關鍵的應用。
b) 由於Python包括了能夠輕鬆、快速地進行資料分析和處理的應用程式、工具和函式庫,因此它成為了資料科學中最受歡迎的工具之一。
c) 為了滿足日益增長的針對資料分析和程式執行任務的需求,開發者會將Julia應用到科學計算、大規模線性代數、機器學習、平行和分散式計算等場景。
d) Julia增強了Python的效能,使得資料科學家能夠輕鬆地執行計算和分析。
4.多功能性
a) Julia能夠讓資料科學家運用各種語言去開發項目,並透過字串的傳輸進行建構。
b) 作為一種適應性非常強的程式語言,Julia可以在LaTeX、C、Python和R語言中產生可執行的程式碼。此外,它在執行複雜且大型的程式碼段時的速度也比Python快。
c) 鑑於Julia的封裝劣勢,您可以透過RCall和PyCall,按需呼叫R和Python。
d) 作為通用可靠語言的最佳選擇,Python可用於Web開發、自動化和腳本的編寫。
5.文件和社群支援
a) 每種程式語言都離不開工具的支援。經過數十年的發展,Python已擁有了龐大且活躍的互助性程式設計社群。此類社群不僅能夠透過持續改進,向開發人員提供各種工具支援、使用者介面和系統資源,而且能夠確保各種顯著的程序問題,能夠得到足夠的關注。
b) 作為一種新興的程式語言,Julia的社群支援仍處於起步階段,目前尚不支援各種主要資源和除錯工具。當然,其社區也正在變得日漸活躍起來。
結論
綜上所述,Julia有著更快的處理速度和易於程式碼翻譯的特點,當然它也需要進一步開發與完善。而Python雖然在性能方面有待改進,但它仍然是程式設計師、資料科學家和學生的首選語言。不過,如果您正在從事需要大量數學計算的專案的話,那麼我推薦您選擇使用Julia語言。
譯者介紹
陳峻(Julian Chen),51CTO社群編輯,具有十多年的IT專案實施經驗,善於對內外部資源與風險實施管控,專注傳播網絡與資訊安全知識與經驗;持續以博文、專題和譯文等形式,分享前沿技術與新知;常以線上、線下等方式,開展資訊安全類培訓與授課。
原文標題:#Julia vs. Python: Key Differences To Consider,作者:sai kumar
以上是全面比較程式語言Julia和Python,讓您更容易做出抉擇!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

PHP的核心優勢包括易於學習、強大的web開發支持、豐富的庫和框架、高性能和可擴展性、跨平台兼容性以及成本效益高。 1)易於學習和使用,適合初學者;2)與web服務器集成好,支持多種數據庫;3)擁有如Laravel等強大框架;4)通過優化可實現高性能;5)支持多種操作系統;6)開源,降低開發成本。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

PHP仍然流行的原因是其易用性、靈活性和強大的生態系統。 1)易用性和簡單語法使其成為初學者的首選。 2)與web開發緊密結合,處理HTTP請求和數據庫交互出色。 3)龐大的生態系統提供了豐富的工具和庫。 4)活躍的社區和開源性質使其適應新需求和技術趨勢。
