分析失敗的AI專案能學到什麼?
AI專案的失敗往往跟大麻煩無關,而是由一個個微小細節決定。面對種種令人興奮的可能性,企業在最初啟動AI專案時往往信心滿滿。但具體實施過程中的現實問題很容易熄滅這份熱情,導致AI計畫被擱置甚至最終失敗。而引發失敗的常見問題之一,就是組織缺乏對專案長期成本的準確考量。管理階層只計算出了專案的初始成本,卻沒注意到後期的維修與更新開銷。
研究企業Cognilytica就對數百個失敗的AI專案做出全面分析,意識到許多組織沒有意識到AI專案生命週期的連續性。組織通常只會為專案的前幾輪迭代分配預算,包括資料準備、清洗、模型訓練、資料標記、模型評估和迭代需求等,但卻沒能為持續實施的迭代工作保持預算供應。另外,組織還必須持續監控模型和資料衰減,根據需求重新訓練模型,並考慮未來進一步擴展和迭代。隨著時間推移,這必然導致組織對AI專案的投資報酬率產生預期偏差甚至失調。
在考慮模型的連續迭代成本時,大家到底經歷了什麼樣的思考過程?大多數組織面臨的挑戰是,他們往往把AI專案視為一次性概念驗證或試點應用,並沒有考慮預留一部分資金、資源和人力用於模型的持續評估和重新訓練。但作為典型的數據驅動項目,AI絕不是一次性投資。人們可能沒有意識到,一旦模型被投入生產,他們就需要持續為模型的迭代和開發分配資金、資源和人力。
所以只考慮到模型建構成本的組織,會在專案啟動之後遇到各種問題。以AI專案成本和投資回報為例,AI專案擁有者需要關注模型的維護成本是多少,以及願意為後續資料準備和模型迭代再投入多少資源。
而成功AI專案的一大共通之處,就在於其功能不會一次交付。相反,成功的專案會將AI方案視為持續迭代的循環,並沒有明確的起點和終點。就如同網路安全專案不是一次性專案一樣,AI這類資料驅動專案也需要持續運轉,確保適應不斷變化的現實、不斷變化的資料。即使是最初效果極佳的模型,也可能隨著時間而逐漸失效,畢竟資料漂移和模型漂移不可避免。此外,隨著組織本身的發展,對AI應用的專業知識與技巧、用例、模型及資料也會持續更新、不斷變化。
再有,全球經濟和世界格局也以意想不到的方式震盪波動。於是乎,任何長期規劃項目、包括極度複雜的AI項目,都免不了要隨之做出調整。過去兩年以來,零售商肯定預料不到供應鏈和勞動市場出現的衝擊,組織也想不到員工會快速轉向居家辦公。現實世界和使用者行為的快速變化必然會導致資料變化,所以模型也得隨之變化。正因如此,我們才需要對模型進行持續監控與迭代,充分考慮到資料漂移與模型漂移問題。
關於迭代的思考:方法論與ML Ops
當組織計畫擴充或增強模型時,也同樣需要配對原有模型迭代機制。例如,如果一家北美企業希望將購買模式預測模型擴展到其他市場,就需要持續迭代模型和資料以適應新的資料需求。
這些因素意味著,組織必須不斷為迭代提供額外資金,確保模型能夠正確識別資料來源及其他關鍵因素。而獲得AI成功的組織也意識到,他們需要遵循經驗驗證的迭代和敏捷方法,並藉此順利完成AI專案擴展。憑藉著敏捷方法論和以資料為中心的專案管理思路,跨產業資料探勘流程標準(CRISP-DM)等已經開始增強AI功能,保證迭代專案不會遺漏某些關鍵步驟。
隨著AI市場的不斷發展,名為「ML Ops」的新興機器學習模式營運管理也開始受到追捧。 ML Ops專注於模型的開發和使用、機器學習運作及部署的整個生命週期。 ML Ops方法及解決方案旨在協助組織在持續發展的空間當中管理並監控AI模型。 ML Ops也可謂站在巨人的肩膀上,充分汲取了DevOps以開發為中心的專案持續迭代/開發思路,以及DataOps對於不斷變化的大規模資料集的管理經驗。
ML Ops的目標是為組織提供模型漂移、模型治理與版本控制等可見性指引,藉此協助AI專案迭代。 ML Ops能幫助大家更好地管理這些問題。雖然目前市面上充斥著各種ML Ops工具,但ML Ops與DevOps一樣,主要強調的是組織自己做事,而非花錢購買就能無腦解決。 Ml Ops最佳實踐涵蓋模型治理、版本控制、發現、監控、透明度以及模型安全/迭代等一系列環節。 ML Ops解決方案還能同時支援相同型號的多個版本,並根據特定需求進行行為客製化。這類解決方案還會追蹤、監控和確定誰有權存取哪些模型,同時嚴格保障治理及安全管理等原則。
考慮到AI迭代的現實需求,ML Ops已經開始成為整體模型建構與管理環境中的重要組成部分。這些功能未來也有望越來越多地作為整體AI及ML工具集中的一分子,並逐步登陸雲端解決方案、開源產品及ML機器學習平台等應用場景。
失敗是成功之母
ML Ops與AI專案的成功,離不開最佳實踐的支持與引導。問題並不會導致AI專案失敗,無法準確解決問題才是失敗的根源。組織需要將AI專案視為一種迭代且循序漸進的過程,並充分透過AI認知專案管理(CPMAI)方法和不斷發展的ML Ops工具探索出適合自己的最佳實踐。從大處著眼,從小處著手,持續迭代的理念應貫穿AI專案的整個生命週期。這些失敗案例絕非故事的終章,而應該成為新的開始。
以上是分析失敗的AI專案能學到什麼?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

2025年全球十大加密貨幣交易所包括Binance、OKX、Gate.io、Coinbase、Kraken、Huobi、Bitfinex、KuCoin、Bittrex和Poloniex,均以高交易量和安全性著稱。

比特幣的價格在20,000到30,000美元之間。 1. 比特幣自2009年以來價格波動劇烈,2017年達到近20,000美元,2021年達到近60,000美元。 2. 價格受市場需求、供應量、宏觀經濟環境等因素影響。 3. 通過交易所、移動應用和網站可獲取實時價格。 4. 比特幣價格波動性大,受市場情緒和外部因素驅動。 5. 與傳統金融市場有一定關係,受全球股市、美元強弱等影響。 6. 長期趨勢看漲,但需謹慎評估風險。

MeMebox 2.0通過創新架構和性能突破重新定義了加密資產管理。 1) 它解決了資產孤島、收益衰減和安全與便利悖論三大痛點。 2) 通過智能資產樞紐、動態風險管理和收益增強引擎,提升了跨鏈轉賬速度、平均收益率和安全事件響應速度。 3) 為用戶提供資產可視化、策略自動化和治理一體化,實現了用戶價值重構。 4) 通過生態協同和合規化創新,增強了平台的整體效能。 5) 未來將推出智能合約保險池、預測市場集成和AI驅動資產配置,繼續引領行業發展。

目前排名前十的虛擬幣交易所:1.幣安,2. OKX,3. Gate.io,4。幣庫,5。海妖,6。火幣全球站,7.拜比特,8.庫幣,9.比特幣,10。比特戳。

全球十大加密貨幣交易平台包括Binance、OKX、Gate.io、Coinbase、Kraken、Huobi Global、Bitfinex、Bittrex、KuCoin和Poloniex,均提供多種交易方式和強大的安全措施。

Binance、OKX、gate.io等十大數字貨幣交易所完善系統、高效多元化交易和嚴密安全措施嚴重推崇。

使用C 中的chrono庫可以讓你更加精確地控制時間和時間間隔,讓我們來探討一下這個庫的魅力所在吧。 C 的chrono庫是標準庫的一部分,它提供了一種現代化的方式來處理時間和時間間隔。對於那些曾經飽受time.h和ctime折磨的程序員來說,chrono無疑是一個福音。它不僅提高了代碼的可讀性和可維護性,還提供了更高的精度和靈活性。讓我們從基礎開始,chrono庫主要包括以下幾個關鍵組件:std::chrono::system_clock:表示系統時鐘,用於獲取當前時間。 std::chron

在C 中處理高DPI顯示可以通過以下步驟實現:1)理解DPI和縮放,使用操作系統API獲取DPI信息並調整圖形輸出;2)處理跨平台兼容性,使用如SDL或Qt的跨平台圖形庫;3)進行性能優化,通過緩存、硬件加速和動態調整細節級別來提升性能;4)解決常見問題,如模糊文本和界面元素過小,通過正確應用DPI縮放來解決。
