首頁 类库下载 java类库 簡易版的TimSort排序演算法

簡易版的TimSort排序演算法

Oct 31, 2016 am 10:53 AM
java

1. 簡易版本TimSort排序演算法原理與實作

TimSort排序演算法是Python和Java針對物件陣列的預設排序演算法。 TimSort排序演算法的本質是歸併排序演算法,只是在歸併排序演算法上進行了大量的最佳化。對於日常生活中我們需要排序的資料通常不是完全隨機的,而是部分有序的,或者部分逆序的,所以TimSort充分利用已有序的部分進行歸併排序。現在我們提供一個簡易版本TimSort排序演算法,它主要做了以下最佳化:

1.1利用原本已有序的片段

首先規定一個最小歸併長度。檢查數組中原本有序的片段,如果已有序的長度小於規定的最小歸併長度,則通過插入排序對已有序的片段進行進行擴充(這樣做的原因避免歸併長度較小的片段,因為這樣的效率比較低)。將有序片段的起始索引位置和已有序的長度入堆疊。

1.2避免一個較長的有序片段和一個較小的有序片段進行歸併,因為這樣的效率比較低:

(1)如果棧中存在已有序的至少三個序列,我們用X ,Y,Z依序表示從棧頂向下的三個已有序列片段,當三者的長度滿足X+Y>=Z時進行歸併。

   (1.1)如果X是三者中長度最大的,先將X,Y,Z出棧,應該先歸併Y和Z,然後將Y和Z歸併的結果入棧,最後X入棧

   ( 1.2)否則將X和Y出棧,歸併後結果入棧。注意,實際上我們不會真正的出棧,寫程式碼中有一些技巧可以達到相同的效果,而且效率更高。

(2)如果不滿足X+Y>=Z的條件或堆疊中僅存在兩個序列,我們用X,Y依序表示從棧頂向下的兩個已有序列的長度,如果X>= Y則進行歸併,然後將歸併後的有序片段結果入棧。

1.3在歸併兩個已有序的片段時,採用了所謂的飛奔(gallop)模式,這樣可以減少參與歸併的數據長度

假設需要歸併的兩個已有序片段分別為X和Y ,如果X片段的前m個元素都比Y片段的首元素小,那麼這m個元素其實是不需要參與歸併的,因為歸併後這m個元素仍然位於原來的位置。同理如果Y片段的最後n個元素都比X的最後一個元素大,那麼Y的最後n個元素也不必參與歸併。這樣就減少了歸併數組的長度(簡易版沒有這麼做),也較少了待排序數組與輔助數組之間資料來回復制的長度,進而提高了歸併的效率。

2. Java原始碼

package datastruct;
 
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Random;
import java.util.Scanner;
 
public class SimpleTimSort<T extends Comparable<? super T>>{
    //最小归并长度
    private static final int MIN_MERGE = 16;
    //待排序数组
    private final T[] a;
    //辅助数组
    private T[] aux;
    //用两个数组表示栈
    private int[] runsBase = new int[40];
    private int[] runsLen = new int[40];
    //表示栈顶指针
    private int stackTop = 0;
     
    @SuppressWarnings("unchecked")
    public SimpleTimSort(T[] a){
        this.a = a;
        aux = (T[]) Array.newInstance(a[0].getClass(), a.length);
    }
     
    //T[from, to]已有序,T[to]以后的n元素插入到有序的序列中
    private void insertSort(T[] a, int from, int to, int n){
        int i = to + 1;
        while(n > 0){
            T tmp = a[i];
            int j;
            for(j = i-1; j >= from && tmp.compareTo(a[j]) < 0; j--){
                a[j+1] = a[j];
            }
            a[++j] = tmp;
            i++;
            n--;
        }
    }
     
    //返回从a[from]开始,的最长有序片段的个数
    private int maxAscendingLen(T[] a, int from){
        int n = 1;
        int i = from;
         
        if(i >= a.length){//超出范围
            return 0;
        }
         
        if(i == a.length-1){//只有一个元素
            return 1;
        }
         
        //至少两个元素
        if(a[i].compareTo(a[i+1]) < 0){//升序片段
            while(i+1 <= a.length-1 && a[i].compareTo(a[i+1]) <= 0){
                i++;
                n++;
            }
            return n;
        }else{//降序片段,这里是严格的降序,不能有>=的情况,否则不能保证稳定性
            while(i+1 <= a.length-1 && a[i].compareTo(a[i+1]) > 0){
                i++;
                n++;
            }
            //对降序片段逆序
            int j = from;
            while(j < i){
                T tmp = a[i];
                a[i] = a[j];
                a[j] = tmp;
                j++;
                i--;
            }
            return n;
        }
    }
     
    //对有序片段的起始索引位置和长度入栈
    private void pushRun(int base, int len){
        runsBase[stackTop] = base;
        runsLen[stackTop] = len;
        stackTop++;
    }
     
    //返回-1表示不需要归并栈中的有序片段
    public int needMerge(){
        if(stackTop > 1){//至少两个run序列
            int x = stackTop - 2;
            //x > 0 表示至少三个run序列
            if(x > 0 && runsLen[x-1] <= runsLen[x] + runsLen[x+1]){
                if(runsLen[x-1] < runsLen[x+1]){
                    //说明 runsLen[x+1]是runsLen[x]和runsLen[x-1]中最大的值
                    //应该先合并runsLen[x]和runsLen[x-1]这两段run
                    return --x;
                }else{
                    return x;
                }
            }else
            if(runsLen[x] <= runsLen[x+1]){
                return x;
            }else{
                return -1;
            }
        }
        return -1;
    }
     
    //返回后一个片段的首元素在前一个片段应该位于的位置
    private int gallopLeft(T[] a, int base, int len, T key){
        int i = base;
        while(i <= base + len - 1){
            if(key.compareTo(a[i]) >= 0){
                i++;
            }else{
                break;
            }
        }
        return i;
    }
     
    //返回前一个片段的末元素在后一个片段应该位于的位置
    private int gallopRight(T[] a, int base, int len, T key){
        int i = base + len -1;
        while(i >= base){
            if(key.compareTo(a[i]) <= 0){
                i--;
            }else{
                break;
            }
        }
        return i;
    }
     
    public void mergeAt(int x){
        int base1 = runsBase[x];
        int len1 = runsLen[x];
         
        int base2 = runsBase[x+1];
        int len2 = runsLen[x+1];
         
        //合并run[x]和run[x+1],合并后base不用变,长度需要发生变化
        runsLen[x] = len1 + len2; 
        if(stackTop == x + 3){
            //栈顶元素下移,省去了合并后的先出栈,再入栈
            runsBase[x+1] = runsBase[x+2];
            runsLen[x+1] = runsLen[x+2];
        }
        stackTop--;
         
        //飞奔模式,减小归并的长度
        int from = gallopLeft(a, base1, len1, a[base2]);
        if(from == base1+len1){
            return;
        }
        int to = gallopRight(a, base2, len2, a[base1+len1-1]);
         
        //对两个需要归并的片段长度进行归并
        System.arraycopy(a, from, aux, from, to - from + 1);
        int i = from;
        int iend = base1 + len1 - 1;
         
        int j = base2;
        int jend = to;
         
        int k = from;
        int kend = to;
         
        while(k <= kend){
            if(i > iend){
                a[k] = aux[j++];
            }else
            if(j > jend){
                a[k] = aux[i++];
            }else
            if(aux[i].compareTo(aux[j]) <= 0){//等号保证排序的稳定性
                a[k] = aux[i++];
            }else{
                a[k] = aux[j++];
            }
            k++;
        }
    }
     
    //强制归并已入栈的序列
    private void forceMerge(){
        while(stackTop > 1){
            mergeAt(stackTop-2);
        }
    }
     
    //timSort的主方法
    public void timSort(){
        //n表示剩余长度
        int n = a.length; 
         
        if(n < 2){
            return;
        }
         
        //待排序的长度小于MIN_MERGE,直接采用插入排序完成
        if(n < MIN_MERGE){
            insertSort(a, 0, 0, a.length-1);
            return;
        }
         
        int base = 0;
        while(n > 0){
            int len = maxAscendingLen(a, base);
            if(len < MIN_MERGE){
                int abscent = n > MIN_MERGE ?  MIN_MERGE - len : n - len;
                insertSort(a, base, base + len-1, abscent);
                len = len + abscent;
            }
            pushRun(base, len);
            n = n - len;
            base = base + len;
             
            int x;
            while((x  = needMerge()) >= 0 ){
                mergeAt(x);
            }
        }
        forceMerge();
    }
     
    public static void main(String[] args){
         
        //随机产生测试用例
        Random rnd = new Random(System.currentTimeMillis());
        boolean flag = true;
        while(flag){
             
            //首先产生一个全部有序的数组
            Integer[] arr1 = new Integer[1000];
            for(int i = 0; i < arr1.length; i++){
                arr1[i] = i;
            }
             
            //有序的基础上随机交换一些值
            for(int i = 0; i < (int)(0.1*arr1.length); i++){
                int x,y,tmp;
                x = rnd.nextInt(arr1.length);
                y = rnd.nextInt(arr1.length);
                tmp = arr1[x];
                arr1[x] = arr1[y];
                arr1[y] = tmp;
            }
             
            //逆序部分数据
            for(int i = 0; i <(int)(0.05*arr1.length); i++){
                int x = rnd.nextInt(arr1.length);
                int y = rnd.nextInt((int)(arr1.length*0.01)+x);
                if(y >= arr1.length){
                    continue;
                }
                while(x < y){
                    int tmp;
                    tmp = arr1[x];
                    arr1[x] = arr1[y];
                    arr1[y] = tmp;
                    x++;
                    y--;
                }
            }
             
            Integer[] arr2 = arr1.clone();
            Integer[] arr3 = arr1.clone();
            Arrays.sort(arr2);
             
            SimpleTimSort<Integer> sts = new SimpleTimSort<Integer>(arr1);
            sts.timSort();
             
            //比较SimpleTimSort排序和库函数提供的排序结果比较是否一致
            //如果没有打印任何结果,说明排序结果正确
            if(!Arrays.deepEquals(arr1, arr2)){
                for(int i = 0; i < arr1.length; i++){
                    if(!arr1[i].equals(arr2[i])){
                        System.out.printf("%d: arr1 %d  arr2 %d\n",i,arr1[i],arr2[i]);
                    }
                }
                System.out.println(Arrays.deepToString(arr3));
                flag = false;
            }
        }
    }
}
登入後複製

3.TimSort演算法應注意的問題

TimSort演算法只會對連續的兩個片段進行歸併,這樣才能保證演算法的穩定性。

最小歸併長度和棧的長度存在一定的關係,如果增大最小歸併長度,則棧的長度也應該增大,否則可能引起棧越界的風險(代碼中棧是透過長度為40的數組來實現的)。

4.完整版的TimSort演算法

實際上,完整版的TimSort演算法會在上述簡易TimSort演算法上還有大量的最佳化。例如有序序列小於最小歸併長度時,我們可以利用類似二分查找的方式來找出應該插入的位置來對陣列進行長度擴充。再例如飛奔模式中採用二分查找的方式查找第二個序列的首元素在第一個序列的位置,同時還可以使用較小的輔助空間完成歸併,有興趣的同學可以查看Java中的源代碼來學習。


本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
<🎜>掩蓋:探險33-如何獲得完美的色度催化劑
2 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1677
14
CakePHP 教程
1430
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
PHP與Python:了解差異 PHP與Python:了解差異 Apr 11, 2025 am 12:15 AM

PHP和Python各有優勢,選擇應基於項目需求。 1.PHP適合web開發,語法簡單,執行效率高。 2.Python適用於數據科學和機器學習,語法簡潔,庫豐富。

PHP:網絡開發的關鍵語言 PHP:網絡開發的關鍵語言 Apr 13, 2025 am 12:08 AM

PHP是一種廣泛應用於服務器端的腳本語言,特別適合web開發。 1.PHP可以嵌入HTML,處理HTTP請求和響應,支持多種數據庫。 2.PHP用於生成動態網頁內容,處理表單數據,訪問數據庫等,具有強大的社區支持和開源資源。 3.PHP是解釋型語言,執行過程包括詞法分析、語法分析、編譯和執行。 4.PHP可以與MySQL結合用於用戶註冊系統等高級應用。 5.調試PHP時,可使用error_reporting()和var_dump()等函數。 6.優化PHP代碼可通過緩存機制、優化數據庫查詢和使用內置函數。 7

PHP與其他語言:比較 PHP與其他語言:比較 Apr 13, 2025 am 12:19 AM

PHP適合web開發,特別是在快速開發和處理動態內容方面表現出色,但不擅長數據科學和企業級應用。與Python相比,PHP在web開發中更具優勢,但在數據科學領域不如Python;與Java相比,PHP在企業級應用中表現較差,但在web開發中更靈活;與JavaScript相比,PHP在後端開發中更簡潔,但在前端開發中不如JavaScript。

PHP與Python:核心功能 PHP與Python:核心功能 Apr 13, 2025 am 12:16 AM

PHP和Python各有優勢,適合不同場景。 1.PHP適用於web開發,提供內置web服務器和豐富函數庫。 2.Python適合數據科學和機器學習,語法簡潔且有強大標準庫。選擇時應根據項目需求決定。

PHP的影響:網絡開發及以後 PHP的影響:網絡開發及以後 Apr 18, 2025 am 12:10 AM

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP:許多網站的基礎 PHP:許多網站的基礎 Apr 13, 2025 am 12:07 AM

PHP成為許多網站首選技術棧的原因包括其易用性、強大社區支持和廣泛應用。 1)易於學習和使用,適合初學者。 2)擁有龐大的開發者社區,資源豐富。 3)廣泛應用於WordPress、Drupal等平台。 4)與Web服務器緊密集成,簡化開發部署。

PHP與Python:用例和應用程序 PHP與Python:用例和應用程序 Apr 17, 2025 am 12:23 AM

PHP適用於Web開發和內容管理系統,Python適合數據科學、機器學習和自動化腳本。 1.PHP在構建快速、可擴展的網站和應用程序方面表現出色,常用於WordPress等CMS。 2.Python在數據科學和機器學習領域表現卓越,擁有豐富的庫如NumPy和TensorFlow。

H5:工具,框架和最佳實踐 H5:工具,框架和最佳實踐 Apr 11, 2025 am 12:11 AM

H5開發需要掌握的工具和框架包括Vue.js、React和Webpack。 1.Vue.js適用於構建用戶界面,支持組件化開發。 2.React通過虛擬DOM優化頁面渲染,適合複雜應用。 3.Webpack用於模塊打包,優化資源加載。

See all articles