Laravel 5框架学习之模型、控制器、视图基础流程,laravel框架_PHP教程
Laravel 5框架学习之模型、控制器、视图基础流程,laravel框架
添加路由
复制代码 代码如下:
Route::get('artiles', 'ArticlesController@index');
创建控制器
复制代码 代码如下:
php artisan make:controller ArticlesController --plain
修改控制器
<?php namespace App\Http\Controllers; use App\Article; use App\Http\Requests; use App\Http\Controllers\Controller; use Illuminate\Http\Request; class ArticlesController extends Controller { public function index() { $articles = Article::all(); return $articles; } }
可以在浏览器中看到返回的 JSON 结果,cool!
修改控制器,返回视图
public function index() { $articles = Article::all(); return view('articles.index', compact('articles')); }
创建视图
@extends('layout') @section('content') <h1 id="Articles">Articles</h1> @foreach($articles as $article) <article> <h2 id="article-title">{{$article->title}}</h2> <div class="body">{{$article->body}}</div> </article> @endforeach @stop
浏览结果,COOL!!!!
显示单个文章
添加显示详细信息的路由
复制代码 代码如下:
Route::get('articles/{id}', 'ArticlesController@show');
其中,{id} 是参数,表示要显示的文章的 id,修改控制器:
public function show($id) { $article = Article::find($id); //若果找不到文章 if (is_null($article)) { //生产环境 APP_DEBUG=false abort(404); } return view('articles.show', compact('article')); }
laravel 提供了更加方便的功能,修改控制器:
public function show($id) { $article = Article::findOrFail($id); return view('articles.show', compact('article')); }
It's cool.
新建视图
@extends('layout') @section('content') <h1 id="article-title">{{$article->title}}</h1> <article> {{$article->body}} </article> @stop
在浏览器中尝试访问:/articles/1 /articles/2
修改index视图
@extends('layout') @section('content') <h1 id="Articles">Articles</h1> <hr/> @foreach($articles as $article) <article> <h2> {{--这种方式可以--}} <a href="/articles/{{$article->id}}">{{$article->title}}</a> {{--这种方式更加灵活,不限制路径--}}<br> <a href="{{action('ArticlesController@show', [$article->id])}}">{{$article->title}}</a> {{--还可以使用--}}<br> <a href="{{url('/articles', $article->id)}}">{{$article->title}}</a> </h2> <div class="body">{{$article->body}}</div> </article> @endforeach @stop
以上所述就是本文的全部内容了,希望能够对大家学习Laravel5框架有所帮助。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显著突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

PHP框架的選擇取決於專案需求和開發者技能:Laravel:功能豐富,社群活躍,但學習曲線陡峭,效能開銷高。 CodeIgniter:輕量級,易於擴展,但功能有限,文件較少。 Symfony:模組化,社群強大,但複雜,效能問題。 ZendFramework:企業級,穩定可靠,但笨重,許可昂貴。 Slim:微框架,速度快,但功能有限,學習曲線陡峭。

一、前言在过去的几年里,YOLOs由于其在计算成本和检测性能之间的有效平衡,已成为实时目标检测领域的主导范式。研究人员探索了YOLO的架构设计、优化目标、数据扩充策略等,取得了显著进展。同时,依赖非极大值抑制(NMS)进行后处理阻碍了YOLO的端到端部署,并对推理延迟产生不利影响。在YOLOs中,各种组件的设计缺乏全面彻底的检查,导致显著的计算冗余,限制了模型的能力。它提供了次优的效率,以及相对大的性能改进潜力。在这项工作中,目标是从后处理和模型架构两个方面进一步提高YOLO的性能效率边界。为此

不同开发环境中PHP框架的性能存在差异。开发环境(例如本地Apache服务器)由于本地服务器性能较低和调试工具等因素,导致框架性能较低。相反,生产环境(例如功能齐全的生产服务器)具有更强大的服务器和优化配置,使框架性能显著提高。

目標偵測系統的標竿YOLO系列,再次獲得了重磅升級。自今年2月YOLOv9發布之後,YOLO(YouOnlyLookOnce)系列的接力棒傳到了清華大學研究人員的手上。上週末,YOLOv10推出的消息引發了AI界的關注。它被認為是電腦視覺領域的突破性框架,以其即時的端到端目標檢測能力而聞名,透過提供結合效率和準確性的強大解決方案,延續了YOLO系列的傳統。論文網址:https://arxiv.org/pdf/2405.14458專案網址:https://github.com/THU-MIG/yo

PHP框架與微服務結合的好處:可擴展性:輕鬆擴展應用程序,添加新功能或處理更多負載。靈活性:微服務獨立部署和維護,更容易進行更改和更新。高可用性:一個微服務的故障不會影響其他部分,確保更高可用性。實戰案例:使用Laravel和Kubernetes部署微服務步驟:建立Laravel專案。定義微服務控制器。建立Dockerfile。建立Kubernetes清單。部署微服務。測試微服務。

今年2月,Google上線了多模態大模型Gemini1.5,透過工程和基礎設施最佳化、MoE架構等策略大幅提升了效能和速度。擁有更長的上下文,更強推理能力,可以更好地處理跨模態內容。本週五,GoogleDeepMind正式發布了Gemini1.5的技術報告,內容涵蓋Flash版等最近升級,該文件長達153頁。技術報告連結:https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf在本報告中,Google介紹了Gemini1

写在前面&笔者的个人理解最近来,随着深度学习技术的发展和突破,大规模的基础模型(FoundationModels)在自然语言处理和计算机视觉领域取得了显著性的成果。基础模型在自动驾驶当中的应用也有很大的发展前景,可以提高对于场景的理解和推理。通过对丰富的语言和视觉数据进行预训练,基础模型可以理解和解释自动驾驶场景中的各类元素并进行推理,为驾驶决策和规划提供语言和动作命令。基础模型可以根据对驾驶场景的理解来实现数据增强,用于提供在常规驾驶和数据收集期间不太可能遇到的长尾分布中那些罕见的可行
