R.E.D。:與專家代表團的縮放文本分類
With the new age of problem-solving augmented by Large Language Models (LLMs), only a handful of problems remain that have subpar solutions. Most classification problems (at a PoC level) can be solved by leveraging LLMs at 70–90% Precision/F1 with just good prompt engineering techniques, as well as adaptive in-context-learning (ICL) examples.
What happens when you want to consistently achieve performancehigher than that — when prompt engineering no longer suffices?
The classification conundrum
Text classification is one of the oldest and most well-understood examples of supervised learning. Given this premise, it shouldreallynot be hard to build robust, well-performing classifiers that handle a large number of input classes, right…?
Welp. It is.
It actually has to do a lot more with the ‘constraints’ that the algorithm is generally expected to work under:
- low amount of training data per class
- high classification accuracy (that plummets as you add more classes)
- possible addition ofnew classesto an existing subset of classes
- quick training/inference
- cost-effectiveness
- (potentially) really large number of training classes
- (potentially) endlessrequiredretraining ofsomeclasses due to data drift, etc.
Ever tried building a classifier beyond a few dozen classes under these conditions? (I mean, even GPT could probably do a great job up to ~30 text classes with just a few samples…)
Considering you take the GPT route — If you have more than a couple dozen classes or a sizeable amount of data to be classified, you are gonna have to reach deep into your pockets with the system prompt, user prompt, few shot example tokens that you will need to classifyone sample.That is after making peace with the throughput of the API, even if you are running async queries.
In applied ML, problems like these are generally tricky to solve since they don’t fully satisfy the requirements of supervised learning or aren’t cheap/fast enough to be run via an LLM. This particular pain point is what the R.E.D algorithm addresses: semi-supervised learning, when the training data per class is not enough to build (quasi)traditional classifiers.
The R.E.D. algorithm
R.E.D: Recursive Expert Delegationis a novel framework that changes how we approach text classification. This is an applied ML paradigm — i.e., there is nofundamentally differentarchitecture to what exists, but its a highlight reel of ideas that work best to build something that is practical and scalable.
In this post, we will be working through a specific example where we have a large number of text classes (100–1000), each class only has few samples (30–100), and there are a non-trivial number of samples to classify (10,000–100,000). We approach this as asemi-supervised learningproblem via R.E.D.
Let’s dive in.
How it works

Instead of having a single classifier classify between a large number of classes, R.E.D. intelligently:
- Divides and conquers— Break the label space (large number of input labels) into multiple subsets of labels. This is a greedy label subset formation approach.
- Learns efficiently— Trains specialized classifiers for each subset. This step focuses on building a classifier that oversamples on noise, where noise is intelligently modeled as data fromother subsets.
- Delegates to an expert— Employes LLMs as expert oracles for specific label validation and correction only, similar to having a team of domain experts. Using an LLM as a proxy, it empirically ‘mimics’howa human expert validates an output.
- Recursive retraining— Continuously retrains with fresh samples added back from the expert until there are no more samples to be added/a saturation from information gain is achieved
The intuition behind it is not very hard to grasp:Active Learningemploys humans as domain experts to consistently ‘correct’ or ‘validate’ the outputs from an ML model, with continuous training. This stops when the model achieves acceptable performance. We intuit and rebrand the same, with a few clever innovations that will be detailed in a research pre-print later.
Let’s take a deeper look…
Greedy subset selection with least similar elements
When the number of input labels (classes) is high, the complexity of learning a linear decision boundary between classes increases. As such, the quality of the classifier deteriorates as the number of classes increases. This is especially true when the classifier does not have enoughsamplesto learn from — i.e. each of the training classes has only a few samples.
This is very reflective of a real-world scenario, and the primary motivation behind the creation of R.E.D.
Some ways of improving a classifier’s performance under these constraints:
- Restrictthe number of classes a classifier needs to classify between
- Make the decision boundary between classes clearer, i.e., train the classifier onhighly dissimilar classes
Greedy Subset Selection does exactly this — since the scope of the problem is Text Classification, we form embeddings of the training labels, reduce their dimensionality via UMAP, then formSsubsets from them. Each of theSsubsets has elements asntraining labels. We pick training labels greedily, ensuring that every label we pick for the subset is the most dissimilar label w.r.t. the other labels that exist in the subset:
import numpy as np from sklearn.metrics.pairwise import cosine_similarity def avg_embedding(candidate_embeddings): return np.mean(candidate_embeddings, axis=0) def get_least_similar_embedding(target_embedding, candidate_embeddings): similarities = cosine_similarity(target_embedding, candidate_embeddings) least_similar_index = np.argmin(similarities) # Use argmin to find the index of the minimum least_similar_element = candidate_embeddings[least_similar_index] return least_similar_element def get_embedding_class(embedding, embedding_map): reverse_embedding_map = {value: key for key, value in embedding_map.items()} return reverse_embedding_map.get(embedding) # Use .get() to handle missing keys gracefully def select_subsets(embeddings, n): visited = {cls: False for cls in embeddings.keys()} subsets = [] current_subset = [] while any(not visited[cls] for cls in visited): for cls, average_embedding in embeddings.items(): if not current_subset: current_subset.append(average_embedding) visited[cls] = True elif len(current_subset) >= n: subsets.append(current_subset.copy()) current_subset = [] else: subset_average = avg_embedding(current_subset) remaining_embeddings = [emb for cls_, emb in embeddings.items() if not visited[cls_]] if not remaining_embeddings: break # handle edge case least_similar = get_least_similar_embedding(target_embedding=subset_average, candidate_embeddings=remaining_embeddings) visited_class = get_embedding_class(least_similar, embeddings) if visited_class is not None: visited[visited_class] = True current_subset.append(least_similar) if current_subset: # Add any remaining elements in current_subset subsets.append(current_subset) return subsets
the result of this greedy subset sampling is all the training labels clearly boxed into subsets, where each subset has at most onlynclasses. This inherently makes the job of a classifier easier, compared to the originalSclasses it would have to classify between otherwise!
Semi-supervised classification with noise oversampling
Cascade this after the initial label subset formation — i.e., this classifier is only classifying between a givensubsetof classes.
Picture this: when you have low amounts of training data, you absolutely cannot create a hold-out set that is meaningful for evaluation. Should you do it at all? How do you know if your classifier is working well?
We approached this problem slightly differently — we defined the fundamental job of a semi-supervised classifier to bepre-emptive classification of a sample. This means that regardless of what a sample gets classified as it will be ‘verified’ and ‘corrected’ at a later stage: this classifier only needs to identify what needs to be verified.
As such, we created a design for how it would treat its data:
- n+1classes, where the last class isnoise
- noise:data from classes that are NOT in the current classifier’s purview. The noise class is oversampled to be 2x the average size of the data for the classifier’s labels
Oversampling on noise is a faux-safety measure, to ensure that adjacent data that belongs to another class is most likely predicted as noise instead of slipping through for verification.
How do you check if this classifier is working well — in our experiments, we define this as the number of ‘uncertain’ samples in a classifier’s prediction. Using uncertainty sampling and information gain principles, we were effectively able to gauge if a classifier is ‘learning’ or not, which acts as a pointer towards classification performance. This classifier is consistently retrained unless there is an inflection point in the number of uncertain samples predicted, or there is only a delta of information being added iteratively by new samples.
Proxy active learning via an LLM agent
This is the heart of the approach — using an LLM as a proxy for a human validator. The human validator approach we are talking about is Active Labelling
Let’s get an intuitive understanding of Active Labelling:
- Use an ML model to learn on a sample input dataset, predict on a large set of datapoints
- For the predictions given on the datapoints, a subject-matter expert (SME) evaluates ‘validity’ of predictions
- Recursively, new ‘corrected’ samples are added as training data to the ML model
- The ML model consistently learns/retrains, and makes predictions until the SME is satisfied by the quality of predictions
For Active Labelling to work, there are expectations involved for an SME:
- when we expect a human expert to ‘validate’ an output sample, the expert understands what the task is
- a human expert will use judgement to evaluate ‘what else’ definitely belongs to a labelLwhen deciding if a new sample should belong toL
Given these expectations and intuitions, we can ‘mimic’ these using an LLM:
- give the LLM an ‘understanding’ of what each label means. This can be done by using a larger model tocritically evaluate the relationship between {label: data mapped to label} for all labels. In our experiments, this was done using a32B variant of DeepSeekthat was self-hosted.

- Instead of predicting what is the correct label,leverage the LLM to identify if a prediction is ‘valid’ or ‘invalid’ only(i.e., LLM only has to answer a binary query).
- Reinforce the idea of what other valid samples for the label look like,i.e., for every pre-emptively predicted label for a sample, dynamically sourcecclosest samples in its training (guaranteed valid) set when prompting for validation.
The result? A cost-effective framework that relies on a fast, cheap classifier to make pre-emptive classifications, and an LLM that verifies these using (meaning of the label + dynamically sourced training samples that are similar to the current classification):
import math def calculate_uncertainty(clf, sample): predicted_probabilities = clf.predict_proba(sample.reshape(1, -1))[0] # Reshape sample for predict_proba uncertainty = -sum(p * math.log(p, 2) for p in predicted_probabilities) return uncertainty def select_informative_samples(clf, data, k): informative_samples = [] uncertainties = [calculate_uncertainty(clf, sample) for sample in data] # Sort data by descending order of uncertainty sorted_data = sorted(zip(data, uncertainties), key=lambda x: x[1], reverse=True) # Get top k samples with highest uncertainty for sample, uncertainty in sorted_data[:k]: informative_samples.append(sample) return informative_samples def proxy_label(clf, llm_judge, k, testing_data): #llm_judge - any LLM with a system prompt tuned for verifying if a sample belongs to a class. Expected output is a bool : True or False. True verifies the original classification, False refutes it predicted_classes = clf.predict(testing_data) # Select k most informative samples using uncertainty sampling informative_samples = select_informative_samples(clf, testing_data, k) # List to store correct samples voted_data = [] # Evaluate informative samples with the LLM judge for sample in informative_samples: sample_index = testing_data.tolist().index(sample.tolist()) # changed from testing_data.index(sample) because of numpy array type issue predicted_class = predicted_classes[sample_index] # Check if LLM judge agrees with the prediction if llm_judge(sample, predicted_class): # If correct, add the sample to voted data voted_data.append(sample) # Return the list of correct samples with proxy labels return voted_data
By feeding the valid samples (voted_data) to our classifier under controlled parameters, we achieve the ‘recursive’ part of our algorithm:

By doing this, we were able to achieve close-to-human-expert validation numbers on controlled multi-class datasets. Experimentally, R.E.D. scales up to1,000 classes while maintaining a competent degree of accuracyalmost on par with human experts (90%+ agreement).
I believe this is a significant achievement in applied ML, and has real-world uses for production-grade expectations of cost, speed, scale, and adaptability. The technical report, publishing later this year, highlights relevant code samples as well as experimental setups used to achieve given results.
All images, unless otherwise noted, are by the author
Interested in more details? Reach out to me over Medium or email for a chat!
以上是R.E.D。:與專家代表團的縮放文本分類的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Meta的Llama 3.2:多模式和移動AI的飛躍 Meta最近公佈了Llama 3.2,這是AI的重大進步,具有強大的視覺功能和針對移動設備優化的輕量級文本模型。 以成功為基礎

嘿,編碼忍者!您當天計劃哪些與編碼有關的任務?在您進一步研究此博客之前,我希望您考慮所有與編碼相關的困境,這是將其列出的。 完畢? - 讓&#8217

Shopify首席執行官TobiLütke最近的備忘錄大膽地宣布AI對每位員工的基本期望是公司內部的重大文化轉變。 這不是短暫的趨勢。這是整合到P中的新操作範式

本週的AI景觀:進步,道德考慮和監管辯論的旋風。 OpenAI,Google,Meta和Microsoft等主要參與者已經釋放了一系列更新,從開創性的新車型到LE的關鍵轉變

介紹 Openai已根據備受期待的“草莓”建築發布了其新模型。這種稱為O1的創新模型增強了推理能力,使其可以通過問題進行思考

介紹 想像一下,穿過美術館,周圍是生動的繪畫和雕塑。現在,如果您可以向每一部分提出一個問題並獲得有意義的答案,該怎麼辦?您可能會問:“您在講什麼故事?

SQL的Alter表語句:動態地將列添加到數據庫 在數據管理中,SQL的適應性至關重要。 需要即時調整數據庫結構嗎? Alter表語句是您的解決方案。本指南的詳細信息添加了Colu

斯坦福大學以人為本人工智能研究所發布的《2025年人工智能指數報告》對正在進行的人工智能革命進行了很好的概述。讓我們用四個簡單的概念來解讀它:認知(了解正在發生的事情)、欣賞(看到好處)、接納(面對挑戰)和責任(弄清我們的責任)。 認知:人工智能無處不在,並且發展迅速 我們需要敏銳地意識到人工智能發展和傳播的速度有多快。人工智能係統正在不斷改進,在數學和復雜思維測試中取得了優異的成績,而就在一年前,它們還在這些測試中慘敗。想像一下,人工智能解決複雜的編碼問題或研究生水平的科學問題——自2023年
