首頁 後端開發 Python教學 Python中的數學模塊:統計

Python中的數學模塊:統計

Mar 09, 2025 am 11:40 AM

Mathematical Modules in Python: Statistics

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。

本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。

import random
import statistics
from fractions import Fraction as F

int_values = [random.randrange(100) for x in range(9)]
frac_values = [F(1, 2), F(1, 3), F(1, 4), F(1, 5), F(1, 6), F(1, 7), F(1, 8), F(1, 9)]

mix_values = [*int_values, *frac_values]

print(statistics.mean(mix_values))
# 929449/42840

print(statistics.fmean(mix_values))
# 21.69582166199813
登入後複製
登入後複製

從Python 3.8版本開始,可以使用geometric_mean(data, weights=None)harmonic_mean(data, weights=None)函數計算幾何平均數和調和平均數。

幾何平均數是將數據中所有n個值的乘積開n次方根的結果。由於浮點數誤差,某些情況下結果可能略有偏差。幾何平均數的一個應用是快速計算複合年增長率。例如,一家公司四年的銷售額分別為100、120、150和200。三年的增長率分別為20%、25%和33.33%。公司的平均銷售增長率將更準確地用百分比的幾何平均數表示。算術平均數總是會給出錯誤且略高的增長率。

import statistics

growth_rates = [20, 25, 33.33]

print(statistics.mean(growth_rates))
# 26.11

print(statistics.geometric_mean(growth_rates))
# 25.542796263143476
登入後複製

調和平均數只是數據的倒數的算術平均數的倒數。如果數據中包含零或負數,則會引發StatisticsError異常。

調和平均數用於計算比率和速率的平均值,例如計算平均速度、密度或併聯電阻。以下代碼計算某人以特定速度行駛固定路程(此處為100公里)時的平均速度。

import statistics

speeds = [30, 40, 60]
distance = 100

total_distance = len(speeds) * distance
total_time = 0

for speed in speeds:
    total_time += distance / speed

average_speed = total_distance / total_time

print(average_speed)
# 39.99999999999999

print(statistics.harmonic_mean(speeds))
# 40.0
登入後複製

需要注意的是,Python 3.8中的multimode()函數在有多個出現頻率相同的數值時,可以返回多個結果。

import statistics

favorite_pet = ['cat', 'dog', 'dog', 'mouse', 'cat', 'cat', 'turtle', 'dog']

print(statistics.multimode(favorite_pet))
# ['cat', 'dog']
登入後複製

計算中位數

依賴眾數計算中心值可能會產生誤導。如前所述,眾數始終是出現頻率最高的數據點,而不管數據集中的其他值如何。另一種確定中心位置的方法是使用pvariance(data, mu=None)函數計算給定數據集的總體方差。

此函數的第二個參數是可選的。如果提供mu的值,則應等於給定數據的均值。如果缺少該值,則會自動計算均值。此函數在您想要計算整個總體的方差時很有用。如果您的數據只是總體的樣本,則可以使用variance(data, xBar=None)函數計算樣本方差,其中xBar是給定樣本的均值,如果沒有提供,則會自動計算。

可以使用pstdev(data, mu=None)stdev(data, xBar=None)函數分別計算總體標準差和样本標準差。

import random
import statistics
from fractions import Fraction as F

int_values = [random.randrange(100) for x in range(9)]
frac_values = [F(1, 2), F(1, 3), F(1, 4), F(1, 5), F(1, 6), F(1, 7), F(1, 8), F(1, 9)]

mix_values = [*int_values, *frac_values]

print(statistics.mean(mix_values))
# 929449/42840

print(statistics.fmean(mix_values))
# 21.69582166199813
登入後複製
登入後複製

從上面的例子可以看出,較小的方差意味著更多的數據點與均值的值更接近。您還可以計算小數和分數的標準差。

總結

在本系列的最後一個教程中,我們學習了statistics模塊中提供的不同函數。您可能已經註意到,提供給函數的數據在大多數情況下都是排序的,但它不必排序。在本教程中,我使用了排序列表,因為它們使更容易理解不同函數返回的值與輸入數據之間的關係。

以上是Python中的數學模塊:統計的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1669
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Web開發的Python:關鍵應用程序 Web開發的Python:關鍵應用程序 Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

See all articles