目錄
/ping
首頁 後端開發 Python教學 如何使用CDKTF在AWS ECS上部署SpringBoot API?

如何使用CDKTF在AWS ECS上部署SpringBoot API?

Jan 24, 2025 am 10:11 AM

> Java開發人員問我如何在AWS ECS上部署其Spring Boot API時,我認為這是潛入CDKTF(Terraform雲開發套件)項目的最新更新的絕佳機會。 在上一篇文章中,我介紹了CDKTF,該框架使您可以使用Python等通用編程語言將基礎結構編寫為代碼(IAC)。從那時起,CDKTF達到了第一個GA版本,使其成為重新訪問它的最佳時機。在本文中,我們將使用CDKTF在AWS EC上部署Spring Boot API。

在我的github repo上找到本文的代碼。

體系結構概述

>進入實施之前,讓我們回顧一下我們旨在部署的體系結構:>

在此圖中,我們可以將體系結構分解為03層:>

如何使用CDKTF在AWS ECS上部署SpringBoot API?網絡

> vpc
  1. 公共和私人子網 Internet網關
    • > nat網關
    • 基礎架構
    應用程序負載平衡器(ALB)
  2. 偵聽器 ecs cluster
    • >服務堆棧
    >目標組
  3. > ECS服務 任務定義
    • 步驟1:容器化您的春季啟動應用程序
    • 我們正在部署的Java API可在GitHub上使用。 >它定義了一個簡單的REST API,具有三個端點:>

/ping

:返回字符串“ pong”。該端點對於測試API的響應能力很有用。它還可以增加Prometheus計數器指標以進行監視。

/HealthCheck

:返回“確定”,用作健康檢查端點,以確保應用程序正確運行。喜歡 /ping,它更新了普羅米修斯計數器以觀察到。
    >
  1. /Hello:接受名稱查詢參數(默認為“世界”)並返回個性化的問候,例如,“ Hello,[name]!”。此終點也與Prometheus計數器集成在一起。
  2. >讓我們添加 dockerfile
  3. >
  4. 我們的應用程序已準備好部署!
>

步驟2:設置AWS CDKTF aws cdktf允許您使用Python定義和管理AWS資源。

1。
FROM maven:3.9-amazoncorretto-21 AS builder

WORKDIR /app

COPY pom.xml .

COPY src src

RUN mvn clean package

# amazon java distribution
FROM amazoncorretto:21-alpine

COPY --from=builder /app/target/*.jar /app/java-api.jar

EXPOSE 8080

ENTRYPOINT ["java","-jar","/app/java-api.jar"]
登入後複製
登入後複製
登入後複製
>先決條件

2。

安裝CDKTF和依賴項

>確保您通過安裝CDKTF及其依賴項具有必要的工具:>

- [**python (3.13)**](https://www.python.org/)
- [**pipenv**](https://pipenv.pypa.io/en/latest/)
- [**npm**](https://nodejs.org/en/)
登入後複製
登入後複製
登入後複製
這安裝了CDKTF CLI,該CLI允許為各種語言旋轉新項目。

3。 初始化您的CDKTF應用程序

>我們可以通過運行:腳打個新的python項目

FROM maven:3.9-amazoncorretto-21 AS builder

WORKDIR /app

COPY pom.xml .

COPY src src

RUN mvn clean package

# amazon java distribution
FROM amazoncorretto:21-alpine

COPY --from=builder /app/target/*.jar /app/java-api.jar

EXPOSE 8080

ENTRYPOINT ["java","-jar","/app/java-api.jar"]
登入後複製
登入後複製
登入後複製

默認情況下創建了許多文件,並且所有依賴項已安裝。

下面的是初始main.pyfile:


- [**python (3.13)**](https://www.python.org/)
- [**pipenv**](https://pipenv.pypa.io/en/latest/)
- [**npm**](https://nodejs.org/en/)
登入後複製
登入後複製
登入後複製
步驟3:建築層

a

堆棧代表一組基礎結構資源,這些資源CDK為Terraform(CDKTF)編譯為獨特的Terraform配置。堆棧為應用程序中的不同環境啟用單獨的狀態管理。要跨層共享資源,我們將利用交叉堆棧參考。

1。

網絡層

>將network_stack.py文件添加到您的項目


$ npm install -g cdktf-cli@latest
登入後複製
添加以下代碼以創建所有網絡資源:


# init the project using aws provider
$ mkdir samples-fargate

$ cd samples-fargate && cdktf init --template=python --providers=aws
登入後複製
然後,編輯

main.py 文件:>

通過運行以下命令來生成Terraform配置文件:>
#!/usr/bin/env python
from constructs import Construct
from cdktf import App, TerraformStack

class MyStack(TerraformStack):
    def __init__(self, scope: Construct, id: str):
        super().__init__(scope, id)

        # define resources here

app = App()
MyStack(app, "aws-cdktf-samples-fargate")

app.synth()
登入後複製


>用以下部件部署網絡堆棧

$ mkdir infra

$ cd infra && touch network_stack.py
登入後複製


我們的VPC已準備就緒,如下圖所示:
from constructs import Construct
from cdktf import S3Backend, TerraformStack
from cdktf_cdktf_provider_aws.provider import AwsProvider
from cdktf_cdktf_provider_aws.vpc import Vpc
from cdktf_cdktf_provider_aws.subnet import Subnet
from cdktf_cdktf_provider_aws.eip import Eip
from cdktf_cdktf_provider_aws.nat_gateway import NatGateway
from cdktf_cdktf_provider_aws.route import Route
from cdktf_cdktf_provider_aws.route_table import RouteTable
from cdktf_cdktf_provider_aws.route_table_association import RouteTableAssociation
from cdktf_cdktf_provider_aws.internet_gateway import InternetGateway

class NetworkStack(TerraformStack):
    def __init__(self, scope: Construct, ns: str, params: dict):
        super().__init__(scope, ns)

        self.region = params["region"]

        # configure the AWS provider to use the us-east-1 region
        AwsProvider(self, "AWS", region=self.region)

        # use S3 as backend
        S3Backend(
            self,
            bucket=params["backend_bucket"],
            key=params["backend_key_prefix"] + "/network.tfstate",
            region=self.region,
        )

        # create the vpc
        vpc_demo = Vpc(self, "vpc-demo", cidr_block="192.168.0.0/16")

        # create two public subnets
        public_subnet1 = Subnet(
            self,
            "public-subnet-1",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}a",
            cidr_block="192.168.1.0/24",
        )

        public_subnet2 = Subnet(
            self,
            "public-subnet-2",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}b",
            cidr_block="192.168.2.0/24",
        )

        # create. the internet gateway
        igw = InternetGateway(self, "igw", vpc_id=vpc_demo.id)

        # create the public route table
        public_rt = Route(
            self,
            "public-rt",
            route_table_id=vpc_demo.main_route_table_id,
            destination_cidr_block="0.0.0.0/0",
            gateway_id=igw.id,
        )

        # create the private subnets
        private_subnet1 = Subnet(
            self,
            "private-subnet-1",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}a",
            cidr_block="192.168.10.0/24",
        )

        private_subnet2 = Subnet(
            self,
            "private-subnet-2",
            vpc_id=vpc_demo.id,
            availability_zone=f"{self.region}b",
            cidr_block="192.168.20.0/24",
        )

        # create the Elastic IPs
        eip1 = Eip(self, "nat-eip-1", depends_on=[igw])
        eip2 = Eip(self, "nat-eip-2", depends_on=[igw])

        # create the NAT Gateways
        private_nat_gw1 = NatGateway(
            self,
            "private-nat-1",
            subnet_id=public_subnet1.id,
            allocation_id=eip1.id,
        )

        private_nat_gw2 = NatGateway(
            self,
            "private-nat-2",
            subnet_id=public_subnet2.id,
            allocation_id=eip2.id,
        )

        # create Route Tables
        private_rt1 = RouteTable(self, "private-rt1", vpc_id=vpc_demo.id)
        private_rt2 = RouteTable(self, "private-rt2", vpc_id=vpc_demo.id)

        # add default routes to tables
        Route(
            self,
            "private-rt1-default-route",
            route_table_id=private_rt1.id,
            destination_cidr_block="0.0.0.0/0",
            nat_gateway_id=private_nat_gw1.id,
        )

        Route(
            self,
            "private-rt2-default-route",
            route_table_id=private_rt2.id,
            destination_cidr_block="0.0.0.0/0",
            nat_gateway_id=private_nat_gw2.id,
        )

        # associate routes with subnets
        RouteTableAssociation(
            self,
            "public-rt-association",
            subnet_id=private_subnet2.id,
            route_table_id=private_rt2.id,
        )

        RouteTableAssociation(
            self,
            "private-rt1-association",
            subnet_id=private_subnet1.id,
            route_table_id=private_rt1.id,
        )

        RouteTableAssociation(
            self,
            "private-rt2-association",
            subnet_id=private_subnet2.id,
            route_table_id=private_rt2.id,
        )

        # terraform outputs
        self.vpc_id = vpc_demo.id
        self.public_subnets = [public_subnet1.id, public_subnet2.id]
        self.private_subnets = [private_subnet1.id, private_subnet2.id]
登入後複製

Network Deployment

2。

基礎結構層

Network Map

>

infra_stack.py文件

添加以下代碼以創建所有基礎架構資源:>
編輯

main.py
#!/usr/bin/env python
from constructs import Construct
from cdktf import App, TerraformStack
from infra.network_stack import NetworkStack

ENV = "dev"
AWS_REGION = "us-east-1"
BACKEND_S3_BUCKET = "blog.abdelfare.me"
BACKEND_S3_KEY = f"{ENV}/cdktf-samples"

class MyStack(TerraformStack):
    def __init__(self, scope: Construct, id: str):
        super().__init__(scope, id)

        # define resources here

app = App()
MyStack(app, "aws-cdktf-samples-fargate")

network = NetworkStack(
    app,
    "network",
    {
        "region": AWS_REGION,
        "backend_bucket": BACKEND_S3_BUCKET,
        "backend_key_prefix": BACKEND_S3_KEY,
    },
)

app.synth()
登入後複製
文件:>


>用以下部件部署infra
$ cdktf synth
登入後複製
堆棧

>

請注意Alb的DNS名稱,我們稍後將使用它。
$ cdktf deploy network
登入後複製
>


3。

服務層
$ cd infra && touch infra_stack.py
登入後複製

>將

service_stack.py ALB DNS添加到您的項目

>

添加以下代碼以創建所有ECS服務資源:>

>更新main.py(最後一次?):>

from constructs import Construct
from cdktf import S3Backend, TerraformStack
from cdktf_cdktf_provider_aws.provider import AwsProvider
from cdktf_cdktf_provider_aws.ecs_cluster import EcsCluster
from cdktf_cdktf_provider_aws.lb import Lb
from cdktf_cdktf_provider_aws.lb_listener import (
    LbListener,
    LbListenerDefaultAction,
    LbListenerDefaultActionFixedResponse,
)
from cdktf_cdktf_provider_aws.security_group import (
    SecurityGroup,
    SecurityGroupIngress,
    SecurityGroupEgress,
)

class InfraStack(TerraformStack):
    def __init__(self, scope: Construct, ns: str, network: dict, params: dict):
        super().__init__(scope, ns)

        self.region = params["region"]

        # Configure the AWS provider to use the us-east-1 region
        AwsProvider(self, "AWS", region=self.region)

        # use S3 as backend
        S3Backend(
            self,
            bucket=params["backend_bucket"],
            key=params["backend_key_prefix"] + "/load_balancer.tfstate",
            region=self.region,
        )

        # create the ALB security group
        alb_sg = SecurityGroup(
            self,
            "alb-sg",
            vpc_id=network["vpc_id"],
            ingress=[
                SecurityGroupIngress(
                    protocol="tcp", from_port=80, to_port=80, cidr_blocks=["0.0.0.0/0"]
                )
            ],
            egress=[
                SecurityGroupEgress(
                    protocol="-1", from_port=0, to_port=0, cidr_blocks=["0.0.0.0/0"]
                )
            ],
        )

        # create the ALB
        alb = Lb(
            self,
            "alb",
            internal=False,
            load_balancer_type="application",
            security_groups=[alb_sg.id],
            subnets=network["public_subnets"],
        )

        # create the LB Listener
        alb_listener = LbListener(
            self,
            "alb-listener",
            load_balancer_arn=alb.arn,
            port=80,
            protocol="HTTP",
            default_action=[
                LbListenerDefaultAction(
                    type="fixed-response",
                    fixed_response=LbListenerDefaultActionFixedResponse(
                        content_type="text/plain",
                        status_code="404",
                        message_body="Could not find the resource you are looking for",
                    ),
                )
            ],
        )

        # create the ECS cluster
        cluster = EcsCluster(self, "cluster", name=params["cluster_name"])

        self.alb_arn = alb.arn
        self.alb_listener = alb_listener.arn
        self.alb_sg = alb_sg.id
        self.cluster_id = cluster.id
登入後複製
>用以下部件部署

服務堆棧

...

CLUSTER_NAME = "cdktf-samples"
...

infra = InfraStack(
    app,
    "infra",
    {
        "vpc_id": network.vpc_id,
        "public_subnets": network.public_subnets,
    },
    {
        "region": AWS_REGION,
        "backend_bucket": BACKEND_S3_BUCKET,
        "backend_key_prefix": BACKEND_S3_KEY,
        "cluster_name": CLUSTER_NAME,
    },
)
...
登入後複製

在這裡我們走!

我們成功創建了所有資源,以在AWS ECS Fargate上部署新服務。
$ cdktf deploy network infra
登入後複製
>運行以下內容以獲取堆棧列表


$ mkdir apps

$ cd apps && touch service_stack.py
登入後複製

步驟4:github動作工作流程

為了使部署自動化,讓我們將一個github操作整合到我們的 java-api

。啟用GITHUB操作後,為您的儲存庫設定秘密和變量,建立.github/workflows/deploy.yml文件,然後新增以下內容:
我們的工作流程正常:

FROM maven:3.9-amazoncorretto-21 AS builder

WORKDIR /app

COPY pom.xml .

COPY src src

RUN mvn clean package

# amazon java distribution
FROM amazoncorretto:21-alpine

COPY --from=builder /app/target/*.jar /app/java-api.jar

EXPOSE 8080

ENTRYPOINT ["java","-jar","/app/java-api.jar"]
登入後複製
登入後複製
登入後複製

本服務已成功部署,如下圖所示:> Github Actions

步驟5:驗證部署

ECS Service>使用以下腳本測試您的部署(

用您的

替換ALB URL):>

ALB現在準備為流量服務!

- [**python (3.13)**](https://www.python.org/)
- [**pipenv**](https://pipenv.pypa.io/en/latest/)
- [**npm**](https://nodejs.org/en/)
登入後複製
登入後複製
登入後複製
最終想法

透過利用AWS CDKTF,我們可以使用Python編寫乾淨,可維護的IAC程式碼。這種方法簡化了部署容器化的應用程序,例如AWS ECS Fargate上的Spring Boot API。 CDKTF的靈活性,再加上Terraform的強大功能,使其成為現代雲端部署的絕佳選擇。

> CDKTF專案為基礎架構管理提供了許多有趣的功能,但我必須承認,我有時會發現它有些冗長。

> 您對CDKTF有任何經驗嗎?您是否在生產中使用過? 隨時與我們分享您的經驗。

以上是如何使用CDKTF在AWS ECS上部署SpringBoot API?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1318
25
PHP教程
1269
29
C# 教程
1248
24
Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法 2小時的Python計劃:一種現實的方法 Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

See all articles