在瀏覽器中執行 DeepSeek-Rn:綜合指南
隨著人工智慧技術的不斷發展,直接在瀏覽器中運行複雜的機器學習模型正變得越來越可行。本指南將引導您學習如何使用 JavaScript 在瀏覽器中載入和使用 DeepSeek-R1 模型。我們還將介紹基於此處提供的範例的實作細節。
為什麼在瀏覽器中運行 NLP 模型?
傳統上,自然語言處理 (NLP) 模型部署在伺服器端,需要網路連線才能發送請求和接收回應。但是,隨著 WebGPU 和 ONNX.js 等技術的進步,現在可以在瀏覽器中直接執行 DeepSeek-R1 等高級模型。其優點包括:
- 增強隱私性:使用者資料不會離開其裝置。
- 降低延遲:消除了與伺服器通訊相關的延遲。
- 離線可用性:即使沒有網路連線也能運作。
關於 DeepSeek-R1
DeepSeek-R1 是一款輕量級且高效的 NLP 模型,經過最佳化可在裝置上進行推理。它在保持較小佔用空間的同時,提供高品質的文字處理能力,使其成為瀏覽器環境的理想選擇。
設定您的項目
先決條件
要開始在瀏覽器中執行 DeepSeek-R1 模型,您需要:
- 支援 WebGPU/WebGL 的現代瀏覽器。
- 用於在 JavaScript 中執行 transformers 模型的 @huggingface/transformers 函式庫。
- 包含載入和處理 DeepSeek-R1 模型邏輯的腳本檔。
示範:試試看!
實作細節
以下是關於如何在瀏覽器中載入和使用 DeepSeek-R1 模型的逐步指南:
import { AutoTokenizer, AutoModelForCausalLM, TextStreamer, InterruptableStoppingCriteria, } from "@huggingface/transformers"; /** * 用于执行 WebGPU 功能检测的辅助函数 */ async function check() { try { const adapter = await navigator.gpu.requestAdapter(); if (!adapter) { throw new Error("WebGPU 不受支持(未找到适配器)"); } } catch (e) { self.postMessage({ status: "error", data: e.toString(), }); } } /** * 此类使用单例模式来启用模型的延迟加载 */ class TextGenerationPipeline { static model_id = "onnx-community/DeepSeek-R1-Distill-Qwen-1.5B-ONNX"; static async getInstance(progress_callback = null) { if (!this.tokenizer) { this.tokenizer = await AutoTokenizer.from_pretrained(this.model_id, { progress_callback, }); } if (!this.model) { this.model = await AutoModelForCausalLM.from_pretrained(this.model_id, { dtype: "q4f16", device: "webgpu", progress_callback, }); } return [this.tokenizer, this.model]; } } const stopping_criteria = new InterruptableStoppingCriteria(); let past_key_values_cache = null; async function generate(messages) { // 获取文本生成管道。 const [tokenizer, model] = await TextGenerationPipeline.getInstance(); const inputs = tokenizer.apply_chat_template(messages, { add_generation_prompt: true, return_dict: true, }); const [START_THINKING_TOKEN_ID, END_THINKING_TOKEN_ID] = tokenizer.encode( "<think></think>", { add_special_tokens: false }, ); let state = "thinking"; // 'thinking' 或 'answering' let startTime; let numTokens = 0; let tps; const token_callback_function = (tokens) => { startTime ??= performance.now(); if (numTokens++ > 0) { tps = (numTokens / (performance.now() - startTime)) * 1000; } if (tokens[0] === END_THINKING_TOKEN_ID) { state = "answering"; } }; const callback_function = (output) => { self.postMessage({ status: "update", output, tps, numTokens, state, }); }; const streamer = new TextStreamer(tokenizer, { skip_prompt: true, skip_special_tokens: true, callback_function, token_callback_function, }); // 通知主线程我们已开始 self.postMessage({ status: "start" }); const { past_key_values, sequences } = await model.generate({ ...inputs, do_sample: false, max_new_tokens: 2048, streamer, stopping_criteria, return_dict_in_generate: true, }); past_key_values_cache = past_key_values; const decoded = tokenizer.batch_decode(sequences, { skip_special_tokens: true, }); // 将输出发送回主线程 self.postMessage({ status: "complete", output: decoded, }); } async function load() { self.postMessage({ status: "loading", data: "正在加载模型...", }); // 加载管道并将其保存以供将来使用。 const [tokenizer, model] = await TextGenerationPipeline.getInstance((x) => { self.postMessage(x); }); self.postMessage({ status: "loading", data: "正在编译着色器并预热模型...", }); // 使用虚拟输入运行模型以编译着色器 const inputs = tokenizer("a"); await model.generate({ ...inputs, max_new_tokens: 1 }); self.postMessage({ status: "ready" }); } // 监听来自主线程的消息 self.addEventListener("message", async (e) => { const { type, data } = e.data; switch (type) { case "check": check(); break; case "load": load(); break; case "generate": stopping_criteria.reset(); generate(data); break; case "interrupt": stopping_criteria.interrupt(); break; case "reset": past_key_values_cache = null; stopping_criteria.reset(); break; } });
關鍵點
-
功能偵測:
check
函數執行功能偵測以確保 WebGPU 支援。 -
單例模式:
TextGenerationPipeline
類別確保只載入一次分詞器和模型,避免冗餘初始化。 -
模型載入:
getInstance
方法從預訓練來源載入分詞器和模型,支援進度回調。 -
推理:
generate
函數處理輸入並產生文字輸出,使用TextStreamer
串流標記。 - 通訊:工作執行緒監聽來自主執行緒的訊息,並根據訊息類型(例如,「check」、「load」、「generate」、「interrupt」、「reset」)執行對應的操作。
結論
在瀏覽器中運行 DeepSeek-R1 等 NLP 模型標誌著在增強用戶體驗和保護資料隱私方面取得了重大進展。只需幾行 JavaScript 程式碼和 @huggingface/transformers 程式庫的功能,您就可以開發出響應迅速且功能強大的應用程式。無論您是建立互動式工具還是智慧助手,基於瀏覽器的 NLP 都可能改變遊戲規則。
探索 DeepSeek-R1 在瀏覽器中的潛力,並立即開始創建更聰明的前端應用程式!
本指南全面概述如何在瀏覽器環境中載入和使用 DeepSeek-R1 模型,並提供了詳細的程式碼範例。有關更具體的實作細節,請參考連結的 GitHub 儲存庫。
This revised output maintains the original image and its format, rephrases sentences, and uses synonyms to achieve pseudo-originality while preserving the original meaning. The code block is unchanged as as preserving the original meaning。 context.
以上是在瀏覽器中執行 DeepSeek-Rn:綜合指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

從C/C 轉向JavaScript需要適應動態類型、垃圾回收和異步編程等特點。 1)C/C 是靜態類型語言,需手動管理內存,而JavaScript是動態類型,垃圾回收自動處理。 2)C/C 需編譯成機器碼,JavaScript則為解釋型語言。 3)JavaScript引入閉包、原型鍊和Promise等概念,增強了靈活性和異步編程能力。

JavaScript在Web開發中的主要用途包括客戶端交互、表單驗證和異步通信。 1)通過DOM操作實現動態內容更新和用戶交互;2)在用戶提交數據前進行客戶端驗證,提高用戶體驗;3)通過AJAX技術實現與服務器的無刷新通信。

JavaScript在現實世界中的應用包括前端和後端開發。 1)通過構建TODO列表應用展示前端應用,涉及DOM操作和事件處理。 2)通過Node.js和Express構建RESTfulAPI展示後端應用。

理解JavaScript引擎內部工作原理對開發者重要,因為它能幫助編寫更高效的代碼並理解性能瓶頸和優化策略。 1)引擎的工作流程包括解析、編譯和執行三個階段;2)執行過程中,引擎會進行動態優化,如內聯緩存和隱藏類;3)最佳實踐包括避免全局變量、優化循環、使用const和let,以及避免過度使用閉包。

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

Python和JavaScript在開發環境上的選擇都很重要。 1)Python的開發環境包括PyCharm、JupyterNotebook和Anaconda,適合數據科學和快速原型開發。 2)JavaScript的開發環境包括Node.js、VSCode和Webpack,適用於前端和後端開發。根據項目需求選擇合適的工具可以提高開發效率和項目成功率。

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。1)C 用于解析JavaScript源码并生成抽象语法树。2)C 负责生成和执行字节码。3)C 实现JIT编译器,在运行时优化和编译热点代码,显著提高JavaScript的执行效率。
