如何有效率地選擇 Spark DataFrame 中每組中具有最高值的第一行?
如何選擇每組的首頁
目標是從DataFrame的每組中提取具有最高值的首頁。在分析數據趨勢或識別特定類別中的頂級參與者時,經常會遇到這種情況。為了實現這一點,可以使用幾種方法:
視窗函數:
視窗函數提供了一種在群組內執行計算的方法。在這種情況下,我們可以使用row_number()
函數根據指定的排序為每一行分配一個序號。然後可以透過過濾排名為1來識別首頁。
import org.apache.spark.sql.functions.{row_number, max, broadcast} import org.apache.spark.sql.expressions.Window val df = sc.parallelize(Seq( (0,"cat26",30.9), (0,"cat13",22.1), (0,"cat95",19.6), (0,"cat105",1.3), (1,"cat67",28.5), (1,"cat4",26.8), (1,"cat13",12.6), (1,"cat23",5.3), (2,"cat56",39.6), (2,"cat40",29.7), (2,"cat187",27.9), (2,"cat68",9.8), (3,"cat8",35.6))).toDF("Hour", "Category", "TotalValue") val w = Window.partitionBy($"hour").orderBy($"TotalValue".desc) val dfTop = df.withColumn("rn", row_number.over(w)).where($"rn" === 1).drop("rn") dfTop.show // +----+--------+----------+ // |Hour|Category|TotalValue| // +----+--------+----------+ // | 0| cat26| 30.9| // | 1| cat67| 28.5| // | 2| cat56| 39.6| // | 3| cat8| 35.6| // +----+--------+----------+
簡單的SQL聚合後連接:
或者,我們可以使用SQL執行聚合,然後將結果與原始DataFrame連接以提取每組的首頁。
val dfMax = df.groupBy($"hour".as("max_hour")).agg(max($"TotalValue").as("max_value")) val dfTopByJoin = df.join(broadcast(dfMax), ($"hour" === $"max_hour") && ($"TotalValue" === $"max_value")) .drop("max_hour") .drop("max_value") dfTopByJoin.show // +----+--------+----------+ // |Hour|Category|TotalValue| // +----+--------+----------+ // | 0| cat26| 30.9| // | 1| cat67| 28.5| // | 2| cat56| 39.6| // | 3| cat8| 35.6| // +----+--------+----------+
使用結構體排序:
無需使用視窗函數或連接即可獲得相同結果的簡潔方法是根據包含值和類別的結構體對資料進行排序。然後,此結構體的最大值將傳回每組所需的首頁。
val dfTop = df.select($"Hour", struct($"TotalValue", $"Category").alias("vs")) .groupBy($"hour") .agg(max("vs").alias("vs")) .select($"Hour", $"vs.Category", $"vs.TotalValue") dfTop.show // +----+--------+----------+ // |Hour|Category|TotalValue| // +----+--------+----------+ // | 0| cat26| 30.9| // | 1| cat67| 28.5| // | 2| cat56| 39.6| // | 3| cat8| 35.6| // +----+--------+----------+
以上是如何有效率地選擇 Spark DataFrame 中每組中具有最高值的第一行?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL適合小型和大型企業。 1)小型企業可使用MySQL進行基本數據管理,如存儲客戶信息。 2)大型企業可利用MySQL處理海量數據和復雜業務邏輯,優化查詢性能和事務處理。

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA

MySQL適合Web應用和內容管理系統,因其開源、高性能和易用性而受歡迎。 1)與PostgreSQL相比,MySQL在簡單查詢和高並發讀操作上表現更好。 2)相較Oracle,MySQL因開源和低成本更受中小企業青睞。 3)對比MicrosoftSQLServer,MySQL更適合跨平台應用。 4)與MongoDB不同,MySQL更適用於結構化數據和事務處理。
