目錄
挑戰:追蹤人工智慧進步
解決方案:AiLert – 開源答案
核心架構
主要技術特點
克服技術障礙
1.記憶體管理
2.內容處理
3.重複資料刪除
加入 AiLert 社群!
首頁 後端開發 Python教學 建構開源人工智慧通訊引擎

建構開源人工智慧通訊引擎

Jan 13, 2025 am 06:58 AM

Building an Open-Source AI Newsletter Engine

挑戰:追蹤人工智慧進步

在 arXiv、GitHub 和各種新聞源上跟上人工智慧的突破是一項艱鉅的任務。 手動處理 40 個瀏覽器分頁不僅效率低下,而且還很糟糕。這是筆記型電腦崩潰的秘訣。

解決方案:AiLert – 開源答案

為了解決這個問題,我開發了 AiLert,一個利用 Python 和 AWS 的開源內容聚合器。 以下是技術概述:

核心架構

<code># Initial (inefficient) approach
for source in sources:
    content = fetch_content(source)  # Inefficient!

# Current asynchronous implementation
async def fetch_content(session, source):
    async with session.get(source.url) as response:
        return await response.text()</code>
登入後複製

主要技術特點

  1. 非同步內容檢索

    • 利用 aiohttp 進行並發請求。
    • 包含自訂速率限制,以避免資料來源過多。
    • 強大的錯誤處理和重試機制。
  2. 智慧型重​​複資料刪除

<code>def similarity_check(text1, text2):
    # Embedding-based similarity check
    emb1, emb2 = get_embeddings(text1, text2)
    score = cosine_similarity(emb1, emb2)

    # Fallback to fuzzy matching if embedding similarity is low
    return fuzz.ratio(text1, text2) if score < threshold else score</code>
登入後複製
  1. 無縫 AWS 整合

    • 利用 DynamoDB 實現可擴充且經濟高效的資料儲存。
    • 採用自動縮放以獲得最佳效能。

克服技術障礙

1.記憶體管理

使用 SQLite 的初步嘗試導致資料庫快速成長到 8.2GB。 此解決方案涉及使用策略性資料保留策略遷移到 DynamoDB。

2.內容處理

大量使用 JavaScript 的網站和速率限制帶來了重大挑戰。 使用客製化的抓取技術和智慧重試策略克服了這些問題。

3.重複資料刪除

識別不同格式的相同內容需要多階段匹配演算法以確保準確性。

加入 AiLert 社群!

我們歡迎在幾個關鍵領域做出貢獻:

<code>- Performance enhancements
- Improved content categorization
- Template system refinements
- API development</code>
登入後複製

在此處尋找程式碼和文件:

代碼:https://www.php.cn/link/883a8869eeaf7ba467da2a945d7771e2
文件:https://www.php.cn/link/883a8869eeaf7ba467da2a945d7771e2/blob/main/README.md

以上是建構開源人工智慧通訊引擎的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1676
14
CakePHP 教程
1429
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

科學計算的Python:詳細的外觀 科學計算的Python:詳細的外觀 Apr 19, 2025 am 12:15 AM

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Web開發的Python:關鍵應用程序 Web開發的Python:關鍵應用程序 Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

See all articles