pandas 中語法 `df[column] = expression` 的解釋
Pandas df['column'] = expression
語法詳解:用於在 Pandas DataFrame (df) 中建立、修改或賦值列。讓我們逐步分解,從基礎到進階。
基礎篇
1. 建立新欄位
-
當 DataFrame 中不存在某一列時,向
df['column']
賦值會建立一個新欄位。 -
範例:
import pandas as pd df = pd.DataFrame({'A': [1, 2, 3]}) print(df) # 输出: # A # 0 1 # 1 2 # 2 3 # 创建一个新列 'B',所有值都设置为 0 df['B'] = 0 print(df) # 输出: # A B # 0 1 0 # 1 2 0 # 2 3 0
登入後複製
2. 修改現有欄位
-
如果列已存在,賦值會取代其內容。
-
範例:
df['B'] = [4, 5, 6] # 替换列 'B' 中的值 print(df) # 输出: # A B # 0 1 4 # 1 2 5 # 2 3 6
登入後複製
中級篇
3. 基於表達式的賦值
-
可以基於計算或轉換向列賦值。
-
範例:
df['C'] = df['A'] + df['B'] # 创建列 'C' 为 'A' 和 'B' 的和 print(df) # 输出: # A B C # 0 1 4 5 # 1 2 5 7 # 2 3 6 9
登入後複製
4. 使用條件賦值
-
可以使用 Pandas 的布林索引進行條件賦值。
-
範例:
df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd') print(df) # 输出: # A B C D # 0 1 4 5 Odd # 1 2 5 7 Even # 2 3 6 9 Odd
登入後複製
5. 在表達式中使用多列
-
可以在一個表達式中使用多列進行更複雜的計算。
-
範例:
df['E'] = (df['A'] + df['B']) * df['C'] print(df) # 输出: # A B C D E # 0 1 4 5 Odd 25 # 1 2 5 7 Even 49 # 2 3 6 9 Odd 81
登入後複製
高級篇
6. 向量化操作
-
向列賦值可以使用向量化操作來提高效能。
-
範例:
df['F'] = df['A'] ** 2 + df['B'] ** 2 # 快速向量化计算 print(df) # 输出: # A B C D E F # 0 1 4 5 Odd 25 17 # 1 2 5 7 Even 49 29 # 2 3 6 9 Odd 81 45
登入後複製
7. 使用 np.where
進行條件邏輯賦值
-
可以使用 NumPy 來進行條件賦值。
-
範例:
import numpy as np df['G'] = np.where(df['A'] > 2, 'High', 'Low') print(df) # 输出: # A B C D E F G # 0 1 4 5 Odd 25 17 Low # 1 2 5 7 Even 49 29 Low # 2 3 6 9 Odd 81 45 High
登入後複製
8. 使用外部函數賦值
-
基於應用於行或列的自訂函數向列賦值。
-
範例:
def custom_function(row): return row['A'] * row['B'] df['H'] = df.apply(custom_function, axis=1) print(df) # 输出: # A B C D E F G H # 0 1 4 5 Odd 25 17 Low 4 # 1 2 5 7 Even 49 29 Low 10 # 2 3 6 9 Odd 81 45 High 18
登入後複製
9. 鍊式操作
-
可以將多個操作連結起來,讓程式碼更簡潔。
-
範例:
df['I'] = df['A'].add(df['B']).mul(df['C']) print(df) # 输出: # A B C D E F G H I # 0 1 4 5 Odd 25 17 Low 4 25 # 1 2 5 7 Even 49 29 Low 10 49 # 2 3 6 9 Odd 81 45 High 18 81
登入後複製
10. 一次賦值多列
-
使用
assign()
一次呼叫建立或修改多列。 -
範例:
df = df.assign( J=df['A'] + df['B'], K=lambda x: x['J'] * 2 ) print(df) # 输出: # A B C D E F G H I J K # 0 1 4 5 Odd 25 17 Low 4 25 5 10 # 1 2 5 7 Even 49 29 Low 10 49 7 14 # 2 3 6 9 Odd 81 45 High 18 81 9 18
登入後複製
專家篇
11. 動態列賦值
-
基於外部輸入動態建立列名。
-
範例:
columns_to_add = ['L', 'M'] for col in columns_to_add: df[col] = df['A'] + df['B'] print(df)
登入後複製
12. 使用外部資料賦值
-
基於外部 DataFrame 或字典向列賦值。
-
範例:
mapping = {1: 'Low', 2: 'Medium', 3: 'High'} df['N'] = df['A'].map(mapping) print(df) # 输出: # A B C D E F G H I J K N # 0 1 4 5 Odd 25 17 Low 4 25 5 10 Low # 1 2 5 7 Even 49 29 Low 10 49 7 14 Medium # 2 3 6 9 Odd 81 45 High 18 81 9 18 High
登入後複製
13. 效能最佳化:
- 賦值時,使用 Pandas 的內建函數(
apply
,向量化操作)比 Python 循環具有更好的效能。
總結
df['column'] = expression
文法是 Pandas 的核心功能,用途廣泛。它允許:
- 新增、修改和操作 DataFrame 中的欄位。
- 執行複雜的計算,包括基於條件的邏輯和多列轉換。
- 鍊式操作和動態產生新列。
這使得 Pandas 成為強大的資料操作和分析庫。
以上是pandas 中語法 `df[column] = expression` 的解釋的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。
