首頁 後端開發 Python教學 Docker 的開發:第 3 集

Docker 的開發:第 3 集

Jan 10, 2025 am 07:58 AM

Docker in development: Episode 3

上一期我們說明如何將 Ruby on Rails 應用容器化。本期我們將探討如何在容器中執行日常任務。

執行 Rake 任務和 Rails 指令

執行 Rake 任務很簡單。建置映像檔後,可以使用 docker-compose 在其中執行命令。例如,如果要查看應用程式的路由:

$ docker-compose run web rails routes
登入後複製

同樣,如果要建立資料庫、遷移和填充資料:

$ docker-compose run web rails db:create db:migrate db:seed
登入後複製

如果要執行測試套件,則必須建立測試資料庫:

$ docker-compose run web rails db:create db:migrate RAILS_ENV=test
登入後複製

然後執行測試套件(假設 rake 預設執行 rake test):

$ docker-compose run web rake
登入後複製

提示:建立自訂腳本/別名

我一天要運行 docker-compose run web rails ... 數百次,為了簡化操作,我把這個腳本放在我的 $PATH 中:

#!/bin/bash
docker-compose run web rails "$@"
登入後複製

請注意,此腳本假設您的 docker-compose.yml 檔案具有 web 服務。如果沒有,則無法運行。

執行其他任務

到目前為止,所有命令都非常簡單明了,您只需在 web 服務中運行它們即可。那麼,對於一些比較困難的任務,例如將預先存在的資料庫載入到容器的資料庫中,該如何處理呢?這是我花較長時間才弄清楚的任務之一。

在 PostgreSQL 中,有兩種​​方法可以做到這一點,這取決於轉儲檔案的格式。過去,我們必須處理 --format=c 轉儲和常規轉儲。

假設您有一個包含 c 格式 PostgreSQL 轉儲的 latest.dump 文件,並且您想要將其加載到(正在運行的)容器中,首先您必須找出容器 ID。您可以透過執行以下命令來實現:

$ docker container ls
登入後複製

$ docker ps
登入後複製

取得容器 ID 後(在此範例中,我們將使用 80f8041db4b4),您可以執行以下命令以在容器中恢復轉儲:

$ docker exec -i 80f8041db4b4 pg_restore -d app_development -U postgres
登入後複製

如果您有常規轉儲(例如 latest.sql),則可以使用以下命令將其恢復:

$ docker exec -i 80f8041db4b4 psql -d app_development -U postgres
登入後複製

如果您使用的是 docker-compose,事情會變得更容易:

$ docker-compose exec -T db pg_restore -d app_development -U postgres
登入後複製

所有內容都容器化!

我常常使用 Elastic Beanstalk。我通常使用 Homebrew 安裝它,但它會安裝許多它自己的依賴項,例如 Python、SQLite 等。我不希望所有這些都在我的系統中,尤其是我總是遇到 Python 版本問題。相反,我將其容器化:docker-awsebcli

敬請期待下一期!

以上是Docker 的開發:第 3 集的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1670
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Web開發的Python:關鍵應用程序 Web開發的Python:關鍵應用程序 Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

See all articles