在 PyTorch 中排列
請我喝杯咖啡☕
*備忘錄:
- 我的貼文解釋了 linspace()。
- 我的貼文解釋了 logspace()。
arange() 可以在 start 和 end-1 之間建立零或整數或浮點數的一維張量(start
*備忘錄:
- arange() 可以與 torch 一起使用,但不能與張量一起使用。
- torch 的第一個參數是 start(可選-預設:0-類型:int、float、complex 或 bool):
*備忘錄
- 它必須小於或等於end。
- int、float、complex 或 bool 的 0D 張量也適用。
- torch 的第二個參數是 end(必要型別:int、float、complex 或 bool):
*備註:
- 它必須大於或等於start。
- int、float、complex 或 bool 的 0D 張量也適用。
- torch 的第三個參數是步驟(可選-預設:1-類型:int、float、complex 或 bool):
*備註:
- 它必須大於0。
- int、float、complex 或 bool 的 0D 張量也適用。
- torch 有 dtype 參數(可選-預設:無型別:dtype):
*備註:
- 如果為None,則從start、end或step推斷,然後對於浮點數,使用get_default_dtype()。 *我的貼文解釋了 get_default_dtype() 和 set_default_dtype()。
- 必須使用 dtype=。
- 我的帖子解釋了 dtype 參數。
- torch 有裝置參數(可選-預設:無-型別:str、int 或 device()):
*備註:
- 如果為 None,則使用 get_default_device()。 *我的貼文解釋了 get_default_device() 和 set_default_device()。
- 必須使用 device=。
- 我的帖子解釋了設備參數。
- torch 有 require_grad 參數(可選-預設:False-Type:bool):
*備註:
- require_grad=必須使用。
- 我的帖子解釋了 require_grad 參數。
- torch 存在 out 參數(可選-預設:無-型別:張量):
*備註:
- 必須使用 out=。
- 我的貼文解釋了論點。
- range() 與 arange() 類似,但 range() 已被棄用。
import torch torch.arange(end=5) # tensor([0, 1, 2, 3, 4]) torch.arange(start=5, end=15) # tensor([5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) torch.arange(start=5, end=15, step=3) # tensor([5, 8, 11, 14]) torch.arange(start=-5, end=5) # tensor([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]) torch.arange(start=-5, end=5, step=3) torch.arange(start=torch.tensor(-5), end=torch.tensor(5), step=torch.tensor(3)) # tensor([-5, -2, 1, 4]) torch.arange(start=-5., end=5., step=3.) torch.arange(start=torch.tensor(-5.), end=torch.tensor(5.), step=torch.tensor(3.)) # tensor([-5., -2., 1., 4.]) torch.arange(start=-5.+0.j, end=5.+0.j, step=3.+0.j) torch.arange(start=torch.tensor(-5.+0.j), end=torch.tensor(5.+0.j), step=torch.tensor(3.+0.j)) # tensor([-5., -2., 1., 4.]) torch.arange(start=False, end=True, step=True) torch.arange(start=torch.tensor(False), end=torch.tensor(True), step=torch.tensor(True)) # tensor([0])
以上是在 PyTorch 中排列的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。
