PyTorch 中的 linspace
請我喝杯咖啡☕
*備忘錄:
- 我的帖子解釋了 arange()。
- 我的貼文解釋了 logspace()。
linspace() 可以建立零個或多個在 start 和 end 之間均勻間隔的整數、浮點數或複數的一維張量(start
*備忘錄:
- linspace() 可以與 torch 一起使用,但不能與張量一起使用。
- torch 的第一個參數是 start(必要型別:int、float、complex 或 bool)。 *int、float、complex 或 bool 的 0D 張量也適用。
- torch 的第二個參數是 end(必要型別:int、float、complex 或 bool)。 *int、float、complex 或 bool 的 0D 張量也適用。
- torch的第三個參數是steps(Required-Type:int):
*備註:
- 必須大於或等於0。
- int 的 0D 張量也適用。
- torch 有 dtype 參數(可選-預設:無型別:dtype):
*備註:
- 如果為None,則從start、end或step推斷,然後對於浮點數,使用get_default_dtype()。 *我的貼文解釋了 get_default_dtype() 和 set_default_dtype()。
- 設定整數類型的開始和結束不足以創建整數類型的一維張量,因此必須設定帶有 dtype 的整數類型。
- 必須使用 dtype=。
- 我的帖子解釋了 dtype 參數。
- torch 有裝置參數(可選-預設:無-型別:str、int 或 device()):
*備註:
- 如果為 None,則使用 get_default_device()。 *我的貼文解釋了 get_default_device() 和 set_default_device()。
- 必須使用 device=。
- 我的帖子解釋了設備參數。
- torch 有 require_grad 參數(可選-預設:False-Type:bool):
*備註:
- require_grad=必須使用。
- 我的帖子解釋了 require_grad 參數。
- torch 存在 out 參數(可選-預設:無-型別:張量):
*備註:
- 必須使用 out=。
- 我的貼文解釋了論點。
import torch torch.linspace(start=10, end=20, steps=0) torch.linspace(start=20, end=10, steps=0) # tensor([]) torch.linspace(start=10., end=20., steps=1) tensor([10.]) torch.linspace(start=20, end=10, steps=1) # tensor([20.]) torch.linspace(start=10., end=20., steps=2) # tensor([10., 20.]) torch.linspace(start=20, end=10, steps=2) # tensor([20., 10.]) torch.linspace(start=10., end=20., steps=3) # tensor([10., 15., 20.]) torch.linspace(start=20, end=10, steps=3) # tensor([20., 15., 10.]) torch.linspace(start=10., end=20., steps=4) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=20., end=10., steps=4) # tensor([20.0000, 16.6667, 13.3333, 10.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=10.+6.j, end=20.+3.j, steps=4) torch.linspace(start=torch.tensor(10.+6.j), end=torch.tensor(20.+3.j), steps=torch.tensor(4)) # tensor([10.0000+6.j, 13.3333+5.j, 16.6667+4.j, 20.0000+3.j]) torch.linspace(start=False, end=True, steps=4) torch.linspace(start=torch.tensor(True), end=torch.tensor(False), steps=torch.tensor(4)) # tensor([0.0000, 0.3333, 0.6667, 1.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000])
以上是PyTorch 中的 linspace的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
