如何在 Python 中透視 Pandas DataFrame?
如何對資料框進行透視?
什麼是透視?
透視是一種用於透過交換行和列來重塑 DataFrame 的資料轉換技術。它通常用於以更易於分析或可視化的方式組織資料。
如何進行資料透視?
有多種方法可以在其中透視DataFrame使用Pandas 函式庫的Python:
1. pd.DataFrame.pivot_table:
1. pd.DataFrame.pivot_table:import pandas as pd # Create a sample DataFrame df = pd.DataFrame({ "row": ["row0", "row1", "row2", "row3", "row4"], "col": ["col0", "col1", "col2", "col3", "col4"], "val0": [0.81, 0.44, 0.77, 0.15, 0.81], "val1": [0.04, 0.07, 0.01, 0.59, 0.64] }) # Pivot the DataFrame using pivot_table df_pivoted = df.pivot_table( index="row", columns="col", values="val0", aggfunc="mean", ) print(df_pivoted) # Output: col0 col1 col2 col3 col4 row row0 0.77 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
# Group the DataFrame by row and col df_grouped = df.groupby(["row", "col"]) # Perform pivot using unstack df_pivoted = df_grouped["val0"].unstack(fill_value=0) print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 0.81 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
範例:
# Set the row and col as the DataFrame's index df = df.set_index(["row", "col"]) # Perform pivot using unstack df_pivoted = df["val0"].unstack(fill_value=0) print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 0.81 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
2. pd.DataFrame.groupby pd.DataFrame.unstack:
此方法涉及按所需的行和列索引將DataFrame 分組,然後使用unstack 來旋轉分組的資料。 範例:# Perform pivot using pivot df_pivoted = df.pivot(index="row", columns="col") print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 key0 0.81 0.44 0.00 0.86 0.65 row1 key1 0.13 0.00 0.39 0.50 0.25 row2 key1 0.00 0.31 0.00 0.54 0.00 row3 key0 0.00 0.10 0.39 0.76 0.24 row4 key1 0.00 0.00 0.00 0.00 0.00
3. pd.DataFrame.set_index pd.DataFrame.unstack:
此方法涉及將所需的行和列索引設定為DataFrame 的索引,然後使用unstack 來旋轉資料。範例:
4. pd.DataFrame.pivot:df["Combined"] = df["row"] + "|" + df["col"] df_pivoted = df.pivot(index="Combined", columns="A", values="B") print(df_pivoted) # Output: A a b c Combined row0|col0 0.0 10.0 7.0 row1|col1 11.0 10.0 NaN row2|col2 2.0 14.0 NaN row3|col3 11.0 NaN NaN row4|col4 NaN NaN NaN
與此方法提供了更簡單的語法,但功能有限。它只允許您指定行索引和列索引,並且不能執行聚合。
範例:df["Combined"] = df["row"] + "|" + df["col"] df_grouped = df.groupby(["Combined", "A"]) df_pivoted = df_grouped["B"].unstack(fill_value=0) print(df_pivoted) # Output: A a b c Combined row0|col0 0.0 10.0 7.0 row1|col1 11.0 10.0 NaN row2|col2 2.0 14.0 NaN row3|col3 11.0 NaN NaN row4|col4 NaN NaN NaN
長格式轉寬格式
df_pivoted.columns = df_pivoted.columns.map("|".join) print(df_pivoted) # Output: a|col0 b|col0 c|col0 a|col1 b|col1 c|col1 a|col2 b|col2 c|col2 a|col3 b|col3 c|col3 row row0 0.0 10.0 7.0 11.0 10.0 NaN 2.0 14.0 NaN 11.0 NaN NaN row1 0.0 10.0 7.0 11.0 10.0 NaN 2.0 14.0 NaN 11.0 NaN NaN
以上是如何在 Python 中透視 Pandas DataFrame?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
