如何使用 Pandas GroupBy 按名稱計算水果購買總量?
使用 Pandas Group-By Sum 以名稱計算水果總數
分組和聚合是處理資料時的基本操作。 Pandas 提供了強大的 GroupBy 函數來簡化這些過程。
考慮以下DataFrame,您要在其中計算每個名稱購買的水果總數:
Fruit Date Name Number Apples 10/6/2016 Bob 7 Apples 10/6/2016 Bob 8 Apples 10/6/2016 Mike 9 Apples 10/7/2016 Steve 10 Apples 10/7/2016 Bob 1 Oranges 10/7/2016 Bob 2 Oranges 10/6/2016 Tom 15 Oranges 10/6/2016 Mike 57 Oranges 10/6/2016 Bob 65 Oranges 10/7/2016 Tony 1 Grapes 10/7/2016 Bob 1 Grapes 10/7/2016 Tom 87 Grapes 10/7/2016 Bob 22 Grapes 10/7/2016 Bob 12 Grapes 10/7/2016 Tony 15
為了實現這一點,我們可以使用GroupBy 函數按“名稱”和“水果”將DataFrame 分組:
df.groupby(['Name', 'Fruit'])
但是,這僅將資料分組,而不執行任何聚合。要計算每個組的“Number”總和,我們可以使用sum():
df.groupby(['Name', 'Fruit']).sum()
這將輸出一個具有分層索引的新DataFrame,其中第一級對應於“Name”,第二層對應“水果”。 「數字」欄包含每組的總和:
Number Name Fruit Bob Apples 16 Grapes 35 Oranges 67 Mike Apples 9 Oranges 57 Steve Apples 10 Tom Grapes 87 Oranges 15 Tony Grapes 15 Oranges 1
這給了我們期望的結果,顯示每個名稱購買的水果總數。
以上是如何使用 Pandas GroupBy 按名稱計算水果購買總量?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。
