PyTorch 中的 OxfordIIITPet
請我喝杯咖啡☕
*我的貼文解釋了 Oxford-IIIT Pet。
OxfordIIITPet()可以使用Oxford-IIIT Pet資料集,如下所示:
*備忘錄:
- 第一個參數是 root(必要類型:str 或 pathlib.Path)。 *絕對或相對路徑都是可能的。
- 第二個參數是 split(可選-預設:"train"-類型:str)。 *可以設定「trainval」(3,680張圖片)或「test」(3,669張圖片)。
- 第三個參數是 target_types(可選-預設:「attr」-類型:str 或 str 清單):
*備註:
- 可以為其設定「category」、「binary-category」和/或「segmentation」: *備註:
- 「category」是 37 個類別的標籤。
- 「binary-category」用於cat(0)或dog(1)的標籤。
- “segmentation”用於分割三圖影像。
- 也可以為其設定空元組或清單。
- 可以設定多個相同的值。
- 如果值的順序不同,則其元素的順序也會不同。
- 第四個參數是transform(Optional-Default:None-Type:callable)。
- 第 5 個參數是 target_transform(Optional-Default:None-Type:callable)。
- 第 6 個參數是 download(可選-預設:False-類型:bool):
*備註:
- 如果為 True,則從網路下載資料集並解壓縮(解壓縮)到根目錄。
- 如果為 True 並且資料集已下載,則將其提取。
- 如果為 True 並且資料集已下載並提取,則不會發生任何事情。
- 如果資料集已經下載並提取,則應該為 False,因為它速度更快。
- 您可以從此處手動下載並提取資料集(images.tar.gz 和annotations.tar.gz)到 data/oxford-iiit-pet/。
- 關於訓練影像索引的類別(類)標籤,阿比西尼亞(0)為0~49,美國鬥牛犬(1)為50~99, 美國比特鬥牛犬(2)是100~149, 巴吉度獵犬(3)為150~199,小獵犬(4)為200~249,孟加拉虎(5)為250~299, 伯曼貓(6)為300~349, 孟買(7)為350~398、拳師犬(8)為399~448、英國短毛貓(9)為449~498等
- 關於測試影像索引的類別(類別)標籤,阿比西尼亞(0)為0~97,美國鬥牛犬(1)為98~197, 美國比特鬥牛犬(2)是198~297, 巴吉度獵犬(3)為298~397,小獵犬(4)為398~497,孟加拉虎(5)為498~597, 伯曼貓(6)為598~697, 孟買(7)為698~785,拳師犬(8)為786~884,英國短毛貓(9)為885~984等。
from torchvision.datasets import OxfordIIITPet trainval_cate_data = OxfordIIITPet( root="data" ) trainval_cate_data = OxfordIIITPet( root="data", split="trainval", target_types="category", transform=None, target_transform=None, download=False ) trainval_bincate_data = OxfordIIITPet( root="data", split="trainval", target_types="binary-category" ) test_seg_data = OxfordIIITPet( root="data", split="test", target_types="segmentation" ) test_empty_data = OxfordIIITPet( root="data", split="test", target_types=[] ) test_all_data = OxfordIIITPet( root="data", split="test", target_types=["category", "binary-category", "segmentation"] ) len(trainval_cate_data), len(trainval_bincate_data) # (3680, 3680) len(test_seg_data), len(test_empty_data), len(test_all_data) # (3669, 3669, 3669) trainval_cate_data # Dataset OxfordIIITPet # Number of datapoints: 3680 # Root location: data trainval_cate_data.root # 'data' trainval_cate_data._split # 'trainval' trainval_cate_data._target_types # ['category'] print(trainval_cate_data.transform) # None print(trainval_cate_data.target_transform) # None trainval_cate_data._download # <bound method OxfordIIITPet._download of Dataset OxfordIIITPet # Number of datapoints: 3680 # Root location: data> len(trainval_cate_data.classes), trainval_cate_data.classes # (37, # ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier', # 'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay', 'Boxer', # 'British Shorthair', ..., 'Wheaten Terrier', 'Yorkshire Terrier']) trainval_cate_data[0] # (<PIL.Image.Image image mode=RGB size=394x500>, 0) trainval_cate_data[1] # (<PIL.Image.Image image mode=RGB size=450x313>, 0) trainval_cate_data[2] # (<PIL.Image.Image image mode=RGB size=500x465>, 0) trainval_bincate_data[0] # (<PIL.Image.Image image mode=RGB size=394x500>, 0) trainval_bincate_data[1] # (<PIL.Image.Image image mode=RGB size=450x313>, 0) trainval_bincate_data[2] # (<PIL.Image.Image image mode=RGB size=500x465>, 0) test_seg_data[0] # (<PIL.Image.Image image mode=RGB size=300x225>, # <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>) test_seg_data[1] # (<PIL.Image.Image image mode=RGB size=300x225>, # <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>) test_seg_data[2] # (<PIL.Image.Image image mode=RGB size=229x300>, # <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>) test_empty_data[0] # (<PIL.Image.Image image mode=RGB size=300x225>, None) test_empty_data[1] # (<PIL.Image.Image image mode=RGB size=300x225>, None) test_empty_data[2] # (<PIL.Image.Image image mode=RGB size=229x300>, None) test_all_data[0] # (<PIL.Image.Image image mode=RGB size=300x225>, # (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)) test_all_data[1] # (<PIL.Image.Image image mode=RGB size=300x225>, # (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)) test_all_data[2] # (<PIL.Image.Image image mode=RGB size=229x300>, # (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>)) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): if len(data._target_types) == 0: plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, _ = data[j] plt.imshow(X=im) elif len(data._target_types) == 1: if data._target_types[0] == "category": plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, cate = data[j] plt.title(label=cate) plt.imshow(X=im) elif data._target_types[0] == "binary-category": plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): plt.subplot(2, 5, i) im, bincate = data[j] plt.title(label=bincate) plt.imshow(X=im) elif data._target_types[0] == "segmentation": plt.figure(figsize=(12, 12)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): im, seg = data[j] if 1 <= i and i <= 5: plt.subplot(4, 5, i) plt.imshow(X=im) plt.subplot(4, 5, i+5) plt.imshow(X=seg) if 6 <= i and i <= 10: plt.subplot(4, 5, i+5) plt.imshow(X=im) plt.subplot(4, 5, i+10) plt.imshow(X=seg) elif len(data._target_types) == 3: plt.figure(figsize=(12, 12)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(ims, start=1): im, (cate, bincate, seg) = data[j] if 1 <= i and i <= 5: plt.subplot(4, 5, i) plt.title(label=f"{cate}, {bincate}") plt.imshow(X=im) plt.subplot(4, 5, i+5) plt.imshow(X=seg) if 6 <= i and i <= 10: plt.subplot(4, 5, i+5) plt.title(label=f"{cate}, {bincate}") plt.imshow(X=im) plt.subplot(4, 5, i+10) plt.imshow(X=seg) plt.tight_layout(h_pad=3.0) plt.show() train_ims = (0, 1, 2, 50, 100, 150, 200, 250, 300, 350) test_ims = (0, 1, 2, 98, 198, 298, 398, 498, 598, 698) show_images(data=trainval_cate_data, ims=train_ims, main_title="trainval_cate_data") show_images(data=trainval_bincate_data, ims=train_ims, main_title="trainval_bincate_data") show_images(data=test_seg_data, ims=test_ims, main_title="test_seg_data") show_images(data=test_empty_data, ims=test_ims, main_title="test_empty_data") show_images(data=test_all_data, ims=test_ims, main_title="test_all_data")
以上是PyTorch 中的 OxfordIIITPet的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。
